精英家教网 > 高中数学 > 题目详情
10.已知f(x)=sinx-$\frac{1}{2}$x(x∈[0,$\frac{π}{2}$]),则f(x)的值域为[0,$\frac{3\sqrt{3}-π}{6}$].

分析 利用导函研究函数的单调性,通过单调性求解值域.

解答 解:f(x)=sinx-$\frac{1}{2}$x(x∈[0,$\frac{π}{2}$]),
那么:f′(x)=cosx-$\frac{1}{2}$.
当$0≤x<\frac{π}{3}$时,f′(x)>0,则f(x)是单调递增,
当$\frac{π}{3}<x≤\frac{π}{2}$时,f′(x)<0,则f(x)是单调递减,
故得f($\frac{π}{3}$)max=$\frac{\sqrt{3}}{2}-\frac{π}{6}$,
∵f(0)=0,f($\frac{π}{2}$)=1$-\frac{π}{4}$
∴f(x)的值域为[0,$\frac{3\sqrt{3}-π}{6}$].
故答案为[0,$\frac{3\sqrt{3}-π}{6}$].

点评 本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.复数$z=\frac{{{{({2-i})}^2}}}{i}$(i为虚数单位),则z的共轭复数的模$|{\overline z}|$=(  )
A.5B.25C.4D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=$\left\{\begin{array}{l}{ax+b,x<0}\\{{2}^{x},x≥0}\end{array}\right.$,且f(-2)=3,f(-1)=f(1).
( I)求f(x)的解析式;
( II)画出f(x)的图象(不写过程)并求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为$\frac{3}{2}$,其中A(a,0),B(0,-b).
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在y轴正半轴上的端点,过B作直线与双曲线交于M,N两点,求B1M⊥B1N时,直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)是一次函数,g(x)是反比例函数,且满足f[f(x)]=x+2,g(1)=-1
(1)求函数f(x)和g(x);
(2)设h(x)=f(x)+g(x),判断函数h(x)在(0,+∞)上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>3}\\{3-x,x≤3}\end{array}\right.$,则f(f(-1))的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=-$\frac{1}{2}$x2+x在定义域内存在区间[m,n]上的值域为[3m,3n],则m+n的值是(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,已知a2tanB=b2tanA,则△ABC的形状是(  )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对的边分别是a,b,c,又I为△ABC的内心,且b-c=4,b+c-a=6,则$\overrightarrow{AI}$×$\overrightarrow{BC}$=(  )
A.6B.8C.12D.16

查看答案和解析>>

同步练习册答案