精英家教网 > 高中数学 > 题目详情
17.下列从集合A到集合B的对应关系中,既是映射关系又是函数关系的是(  )
A.B.C.D.

分析 根据函数的定义,函数是定义在数集上的一种映射关系,即可得出结论.

解答 解:根据函数的定义,函数是定义在数集上的一种映射关系,
故选C.

点评 本题考查映射、函数的定义,明确函数是定义在数集上的一种映射关系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足$\left\{\begin{array}{l}y-2≤0\\ x+3≥0\\ x-y-1≤0\end{array}\right.$,则$\frac{x+2y-6}{x-4}$的取值范围是(  )
A.$[-1,0)∪[\frac{17}{7},+∞)$B.$[-1,0)∪[0,\frac{17}{7})$C.$(-∞,-1]∪[\frac{17}{7},+∞)$D.$[-1,\frac{17}{7}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,假命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)是一次函数,g(x)是反比例函数,且满足f[f(x)]=x+2,g(1)=-1
(1)求函数f(x)和g(x);
(2)设h(x)=f(x)+g(x),判断函数h(x)在(0,+∞)上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}中,a1=2,a3+a5=10.
(1)求数列{an}的通项公式;
(2)设bn=an•2n,求数列{$\frac{1}{{b}_{n}}$ }的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=-$\frac{1}{2}$x2+x在定义域内存在区间[m,n]上的值域为[3m,3n],则m+n的值是(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)满足不等式f(x)<5x-2的解集是(1,2),且f(x)的图象过点(-1,-1).记函数g(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,x>0}\\{-f(x),x≤0}\end{array}\right.$.
(Ⅰ)求f(x)的解析式,并画出g(x)的图象;
(Ⅱ)求关于x的方程2g2(x)-5g(x)+2=0不同的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在正方体ABCD-A1B1C1D1中,B1D与C1D1所成角的正弦值是(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx+a的最大值为2.
(1)求a的值,并求函数f(x)图象的对称轴方程;
(2)将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位,得到函数y=g(x)的图象,求函数g(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上的值域.

查看答案和解析>>

同步练习册答案