精英家教网 > 高中数学 > 题目详情
设a=∫
 
π
0
sinxdx,则二项式(ax-
1
x
8的展开式中x2项的系数是(  )
A、-1120B、1120
C、-1792D、1792
考点:二项式系数的性质,定积分
专题:二项式定理
分析:利用定积分求出a,通过二项式定理的通项公式求出通项,通过x的指数为2求出项数,然后求解即可.
解答: 解:由题意a=
π
0
 sinxdx=(-cosx)
|
π
0
=2

∴二项式为(2x-
1
x
8,设展开式中第r项为Tr+1
所以Tr+1=
C
r
8
(2x)8-r(-
1
x
)r
=(-1)r
C
r
8
x8-
3r
2
,令8-
3r
2
=2
,解得r=4.
代入得展开式中x2项的系数为:
C
4
8
24
=1120.
故选:B.
点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件,为了解它们的产品质量是否存在显著差异,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足约束条件
x-y+5≥0
x+y≥0
x≤3
,若y≥kx-3恒成立,则实数k的数值范围是(  )
A、[-
11
5
,0]
B、[0,
11
3
]
C、(-∞,0]∪[
11
5
,+∞)
D、(-∞,-
11
5
]∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z=
3
i+1
1+i
(其中i是虚数单位),则|z|=(  )
A、2
2
B、
2
C、1
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一组样本数据的频率分布直方图,则依据图形中的数据,可以估计总体的平均数与中位数分别是(  )
A、12.5  12.5
B、13    13
C、13.5  12.5
D、13.5 13

查看答案和解析>>

科目:高中数学 来源: 题型:

一个由实数组成的等比数列,它的前6项和是前3项和的9倍,则此数列的公比为(  )
A、2
B、3
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)=cos(ωx+φ)-
3
sin(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期为π,则ω,φ分别是(  )
A、2,
π
3
B、
1
2
π
6
C、
1
2
π
3
D、2,
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数y=
|x+1|-2
的定义域是(-∞,-3]∪[1,+∞);命题q:若a,b∈R,则|a+b|<1是|a|+|b|<1的充分而不必要条件,则下列命题中为真命题的是(  )
A、p∧q
B、(¬p)∨q
C、p∨(¬q)
D、(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且a4-a2=6,S10=-465.
(1)求等差数列{an}的通项公式an
(2)求Sn的最小值,并求相应的n的值.

查看答案和解析>>

同步练习册答案