精英家教网 > 高中数学 > 题目详情
9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{2\sqrt{5}}{5}$,其左右焦点分别为F1,F2,过F1的直线交椭圆于A,B两点,且△ABF2的周长为4$\sqrt{5}$.
(1)求椭圆的方程;
(2)如图,直线x=ty+m交椭圆于不同两点C,D,若以线段CD为直径的圆过原点O,求|CD|的取值范围.

分析 (2)当直线OC的斜率不存在或斜率为0时,可得|CD|=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{6}$.当直线OC的斜率存在时,设直线OC的方程为y=kx(k≠0),直线OD的方程为:y=-$\frac{1}{k}$x联立椭圆方程,解得x2,y2.可得|OC|2=x2+y2=$\frac{5+5{k}^{2}}{1+5{k}^{2}}$.同理可得|OD|2=$\frac{5+5{k}^{2}}{5+{k}^{2}}$.可得|CD|2=|OC|2+|OD|2,求得最小值,即可得出范围.

解答 解:(1)由椭圆的定义可得|AF1|+|AF2|=|BF1|+|BF2|=2a,
即有△ABF2的周长为|AB|+|AF2|+|BF2|
=|AF1|+|AF2|+|BF1|+|BF2|=4a=4$\sqrt{5}$,可得a=$\sqrt{5}$,
e=$\frac{c}{a}$=$\frac{2\sqrt{5}}{5}$,可得c=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=1,
即有椭圆的方程为$\frac{{x}^{2}}{5}$+y2=1;
(2)当直线OC的斜率不存在或斜率为0时,
可得|CD|=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{6}$,
当直线OC的斜率存在时,
设直线OC的方程为y=kx(k≠0),直线OD的方程为:y=-$\frac{1}{k}$x
联立$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+5{y}^{2}=5}\end{array}\right.$,解得x2=$\frac{5}{1+5{k}^{2}}$,y2=$\frac{5{k}^{2}}{1+5{k}^{2}}$.
∴|OC|2=x2+y2=$\frac{5+5{k}^{2}}{1+5{k}^{2}}$.
同理可得|OD|2=$\frac{5+5{k}^{2}}{5+{k}^{2}}$.
∴|CD|2=|OC|2+|OD|2=$\frac{5+5{k}^{2}}{1+5{k}^{2}}$+$\frac{5+5{k}^{2}}{5+{k}^{2}}$=$\frac{30(1+{k}^{2})^{2}}{5{k}^{4}+26{k}^{2}+5}$
=$\frac{30}{5+\frac{16}{{k}^{2}+\frac{1}{{k}^{2}}+2}}$≥$\frac{10}{3}$,当k2=1时取等号.
∴|CD|≥$\frac{\sqrt{30}}{3}$.
综上可得,$\frac{\sqrt{30}}{3}$≤|CD|≤$\sqrt{6}$.

点评 本题考查了椭圆的标准方程及其性质、勾股定理、直角三角形的面积、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.巴山市某重点中学“发现数学的美丽”尖峰团队的记为同学弘扬“砥砺自为”的校训精神,在周末自觉抵制网络游戏,发挥QQ群的正能量作用开展“共探共享”自主研究性学习活动,这是他们以人教A版教学必修一-P82.8题中的函数:f(x)=lg$\frac{1-x}{1+x}$为基本素材,取得的部分研究结果:
①QQ好友”通过乡下富起来“发现:函数f(x)的定义域为(-1,1);
②QQ好友“南江红叶红起来”发现:对于任意a,b∈(-1,1),都有f(a)+f(b)=f($\frac{a+b}{1+ab}$)恒成立;
③QQ好友“巴中二环通起来”发现:函数f(x)是偶函数;
④QQ好友“平昌水乡美起来”发现:函数f(x)只有一个零点;
⑤QQ好友“恩阳机场飞起来”发现:对于函数f(x)定义域中任意不同实数x1,x2,总满足$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0.其中所有的正确研究成果的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图,
(Ⅰ)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(Ⅱ)用样本估计总体,如果90%的居民每月的用水量不超出标准,则月均用水量的最低标准定为多少吨,并说明理由(精确到0.01);
(Ⅲ)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(Ⅱ)中最低标准的人数为X,求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从1,2,3,5这四个数中,随机抽取3个不同的数,则这3个数的和为奇数的概率是(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过正三角形的外接圆的圆心且平行于一边的直线分正三角形两部分的面积比为4:5,类比此性质,猜想过正四面体(底面是正三角形,侧面是三个完全相同的等边三角形,顶点在底面的投影是底面正三角形的中心)的外接球的球心且平行于一个面的平面分正四面体两部分的体积比为27:37.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知命题p:方程$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{4-k}$=1表示焦点在x轴上的椭圆,命题q:(k-1)x2+(k-3)y2=1表示双曲线.若p∨q为真命题,则实数k的取值范围是(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=log9(9x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)若方程f(x)=$\frac{1}{2}$x+b有实数根,求b的取值范围;
(3)设h(x)=log9(a•3x-$\frac{4}{3}$a),若函数f(x)与h(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.把函数$y=sin(2x+\frac{π}{6})$的图象向右平移m(其中m>0)个单位,所得图象关于y轴对称,则m的最小值是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(θ)=sin2θ+sin2(θ+α)+sin2(θ+β),其中α,β是适合0≤α≤β≤π的常数,试问α,β取何值时f(θ)是与θ无关的定值.

查看答案和解析>>

同步练习册答案