精英家教网 > 高中数学 > 题目详情
19.已知等比数列{an}和等差数列{bn}均是首项为2,各项为正数的数列,且b2=4a2,a2b3=6.
(1)求数列{an}、{bn}的通项公式;
(2)求使a${\;}_{{b}_{n}}$<0.001成立的正整数n的最小值.

分析 (1)利用等比数列与等差数列的通项公式即可得出.
(2)由(1)得abn=a2n=$(\frac{1}{2})^{2n-2}$,利用abn<0.001,化简即可得出.

解答 解:(1)设{an}的公比为q,{bn}的公差为d,d>0.
∵b2=4a2,a2b3=6.∴2+d=4×2q,2q×(2+2d)=6,
解得d=2,q=$\frac{1}{2}$.
∴an=$2×(\frac{1}{2})^{n-1}$=$(\frac{1}{2})^{n-2}$,bn=2+2(n-1)=2n.
(2)由(1)得abn=a2n=$(\frac{1}{2})^{2n-2}$,
∵abn<0.001,
即$(\frac{1}{2})^{2n-2}$<0.001,∴22n-2>1 000,∴2n-2≥10,
即n≥6,∴满足题意的正整数n的最小值为6.

点评 本题考查了等差数列与等比数列的通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“m>0,n<0”是“方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示双曲线”的(  )
A.必要但不充分条件B.充分但不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:x2-8x-20≤0,q:1-a≤x≤1+a,若p是q的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\frac{1}{{{x^2}+1}}$的值域是(  )
A.(-∞,-1)B.(0,+∞)C.[1,+∞)D.( 0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a∈(0,1),则函数y=$\frac{1}{\sqrt{lo{g}_{a}(x-1)}}$的定义域为(  )
A.(1,2]B.(1,+∞)C.(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)已知f(${\frac{2}{x}$+2)=x+1,求f(x);
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}为等差数列,且a3=5,a5=9,数列{bn}的前n项和为Sn,且Sn+bn=2.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=$\frac{a_n}{b_n}$(n∈N*),Tn为数列{cn}的前n项和,求Tn
(Ⅲ)若dn=$\frac{{{T_{n+2}}-3}}{{2({T_{n+1}}-3)}}$(n∈N*),求dn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中,真命题是(  )
A.?x∈R,2x>x2B.若a>b,c>d,则 a-c>b-d
C.?x∈R,ex<0D.ac2<bc2是a<b的充分不必要条件

查看答案和解析>>

同步练习册答案