精英家教网 > 高中数学 > 题目详情

如图,在中,边上的中线长为3,且

(Ⅰ)求的值;(Ⅱ)求边的长.

(Ⅰ);(Ⅱ)4;

解析试题分析:(Ⅰ)由条件可求出的正弦值,再用差角公式即可求出;(Ⅱ)在可用正弦定理求出,从而得到,在中再应用余弦定理则可求出.
试题解析:(Ⅰ)因为,所以    2分
,所以     4分
所以
         7分
(Ⅱ)在中,由正弦定理,得,即,解得     10分
,从而在中,由余弦定理,得
,所以        14分
考点:正弦定理、余弦定理的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

的角的对边分别为,已知.
(Ⅰ)求角
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知.
(Ⅰ)求的值;
(Ⅱ)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,分别是三内角的对边,已知
(Ⅰ)求角的大小;
(Ⅱ)若,判断的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角中,角的对边分别为,已知
(1)求角
(2)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△中,内角的对边分别为,已知.
(Ⅰ)求
(Ⅱ)若,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

怀化市某棚户区改造工程规划用地近似为图中半径为的圆面,图中圆内接四边形为拟定拆迁的棚户区,测得百米,百米,百米.

(Ⅰ)请计算原棚户区的面积及圆面的半径
(Ⅱ)因地理条件的限制,边界不能变更,而边界可以调整,为了提高棚户区改造建设用地的利用率,请在圆弧上求出一点,使得棚户区改造的新建筑用地的面积最大,并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往救援,同时把消息告之在甲船的南偏西30°,相距10海里C处的乙船.

(1)求处于C处的乙船和遇险渔船间的距离;
(2)设乙船沿直线CB方向前往B处救援,求∠ACB的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中向量
(1)求的最小正周期;
(2)在中, 分别是角的对边,  求的值.

查看答案和解析>>

同步练习册答案