精英家教网 > 高中数学 > 题目详情
2.已知∠α的终边经过点P(2,m),若sinα=-$\frac{4}{5}$,则m的值为$-\frac{8}{3}$.

分析 先求出终边上的点到原点的距离,利用三角函数的定义,即可得到关于sinα的方程,解出y即可.

解答 解:由于α的终边上点P(2,m)到原点的距离为$\sqrt{4+{m}^{2}}$,
则sinα=$\frac{m}{\sqrt{4+{m}^{2}}}=-\frac{4}{5}$,
解得m=-$\frac{8}{3}$或m=$\frac{8}{3}$(舍)
故答案为:$-\frac{8}{3}$.

点评 本题考查三角函数的定义,解决已知角的终边上的点的坐标,求三角函数的值,应该利用三角函数的定义来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x+y≤2}\\{x-y≤0}\end{array}\right.$,则z=(a2+1)x-a2y(a≠0)的大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x+$\frac{1}{x}$+alnx,g(x)=x+$\frac{1}{x}$+($\frac{1}{x}$-x)lnx,其中a∈R.
(Ⅰ)证明:g(x)=g($\frac{1}{x}$),并求g(x)的最大值;
(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,求:
(1)($\overrightarrow{a}$-2$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$);
(2)($\overrightarrow{a}$-2$\overrightarrow{b}$)与($\overrightarrow{a}$+$\overrightarrow{b}$)的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知c=$\frac{2}{π}\int_{-1}^1{\sqrt{1-{x^2}}dx}$,直线$\sqrt{2}$ax+by=2(其中a、b为非零实数)与圆x2+y2=c,(c>0)相交于A、B两点,O为坐标原点,且△AOB为直角三角形,则$\frac{1}{a^2}+\frac{2}{b^2}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PD=4,DC=DB=3,PB=PC=5,AD⊥DB,
(1)求证:AD⊥PB;
(2)若tan∠BDC=$\frac{3}{4}$,且PA与平面PCD所成角的正弦值为$\frac{12\sqrt{13}}{65}$,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a>0且a≠1,则使方程loga(x-2ak)=$lo{g}_{{a}^{2}}$(x2-a2)有解的k的取值范围为(  )
A.0<k<$\frac{1}{2}$或k<-$\frac{1}{2}$B.0<k<1或k<-1C.0<k<2或k<-2D.0<k<1或k<-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数f(t)=$\sqrt{1-t}$+$\sqrt{t}$在[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在锐角△ABC中,若A=2B,则$\frac{a}{b}$的范围是(  )
A.($\sqrt{2}$,$\sqrt{3}$)B.($\sqrt{3}$,2)C.(0,2)D.($\sqrt{2}$,2)

查看答案和解析>>

同步练习册答案