精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=sin(2x+$\frac{π}{3}$),f′(x)是函数f(x)的导函数,且g(x)=2f(x)+f′(x),把g(x)的图象向右平移φ(φ>0)个单位,得到的函数为偶函数,则φ的最小值为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{12}$D.$\frac{π}{24}$

分析 由条件可求f′(x),根据三角函数恒等变换的应用可求g(x),进而根据正弦函数的奇偶性、函数y=Asin(ωx+φ)的图象变换规律,求得φ的值.

解答 解:∵f(x)=sin(2x+$\frac{π}{3}$),f′(x)是函数f(x)的导函数,
∴f′(x)=2cos(2x+$\frac{π}{3}$),
∴g(x)=2f(x)+f′(x)=2sin(2x+$\frac{π}{3}$)+2cos(2x+$\frac{π}{3}$)=2$\sqrt{2}$sin(2x+$\frac{π}{3}$+$\frac{π}{4}$)=2$\sqrt{2}$sin(2x+$\frac{7π}{12}$),
∴把g(x)的图象向右平移φ(φ>0)个单位,得到的函数解析式为:y=2$\sqrt{2}$sin[2(x-φ)+$\frac{7π}{12}$]=2$\sqrt{2}$sin(2x-2φ+$\frac{7π}{12}$),
∵得到的此函数为偶函数,可得:-2φ+$\frac{7π}{12}$=kπ+$\frac{π}{2}$,k∈Z,即 φ═$\frac{π}{24}$-$\frac{kπ}{2}$,k∈Z,
∵φ>0,
∴当k=0时,φ的最小值为$\frac{π}{24}$.
故选:D.

点评 本题主要考查正弦函数的图象,正弦函数的周期性和奇偶性,函数y=Asin(ωx+φ)的图象变换规律,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,已知椭圆Г:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右焦点分别为F1,F2,过点F1,F2分别作两条平行直线AB,CD交椭圆Г于点A、B、C、D.
(Ⅰ)求证:|AB|=|CD|;
(Ⅱ)求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=asinx-x+b(a、b均为大于零的常数).设函学f(x)在x=$\frac{π}{3}$处有极值,对于一切x∈[0,$\frac{π}{2}$],不等式f(x)>sinx+cosx总成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一质点的运动方程为S(t)=t2+2t,则该质点在t=1时的瞬时速度为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解不等式$\frac{1}{x+4}$+$\frac{1}{x+5}$>$\frac{1}{x+6}$+$\frac{1}{x+3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-ax.
(1)当a=1时,求函数f(x)的单调区间;
(2)若f(x)=0有两个不相等的实数根x1,x2(x1<x2),求证:$\frac{1}{{x}_{2}}$<a<$\frac{1}{{x}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=3cosx-$\sqrt{3}$sinx的图象的一条对称方程是(  )
A.x=$\frac{5π}{6}$B.x=$\frac{2π}{3}$C.x=$\frac{π}{3}$D.x=-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=6,$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=2,则向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.3D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a=-2${∫}_{0}^{\frac{π}{2}}$(sin2$\frac{x}{2}$-$\frac{1}{2}$)dx,则二项式(ax+$\frac{1}{2ax}$)9的展开式中x的一次项系数为(  )
A.-$\frac{63}{16}$B.$\frac{63}{16}$C.-$\frac{63}{8}$D.$\frac{63}{8}$

查看答案和解析>>

同步练习册答案