分析 f(x)=4x-m2x+1+m2-5是定义在r上的“局部奇函数”,列出方程,可求出实数m的取值范围.
解答 解:f(x)=4x-m•2x+1+m2-5,f(-x)+f(x)=0可化为
4x+4-x-2m(2x+2-x)+2m2-10=0
令t=2x+2-x,则t∈[2,+∞),4x+4-x=t2-2,
即 t2-2mt+2m2-12=0在[2,+∞)有解,
即可保证f(x)为“局部中心对称函数”
令g(t)=t2-2mt+2m2-12
①当g(2)≤0时,t2-2mt+2m2-12=0在[2,+∞)有解,
由g(2)≤0,即2m2-4m-8≤0,解得1-$\sqrt{5}$≤m≤1+$\sqrt{5}$;
②当g(2)>0时,t2-2mt+2m2-12=0在[2,+∞)有解等价于
$\left\{\begin{array}{l}{△=4{m}^{2}-4(2{m}^{2}-12)≥0}\\{g(2)>0,m>2}\end{array}\right.$ 解得2<m≤2$\sqrt{3}$,
综上,所求实数m的取值范围为1-$\sqrt{5}$<m≤2$\sqrt{3}$.
故答案为:1-$\sqrt{5}$<m≤2$\sqrt{3}$.
点评 本题考查的知识点是函数奇偶性的性质,其中正确理解“局部奇函数”的概念是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2,5} | B. | {3,6} | C. | {2,5,6} | D. | {2,3,5,6,8} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{10}+\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{10}-\sqrt{2}}}{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | 2π | $\frac{13π}{2}$ | |||
| f(x) | 0 | 4 | -4 | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com