分析 由根式内部的代数式大于等于0,对数式的真数大于0联立不等式组求解.
解答 解:由$\left\{\begin{array}{l}{2-x≥0①}\\{\frac{2x-1}{3-x}>0②}\end{array}\right.$,
解①得:x≤2;解②得$\frac{1}{2}$<x<3.
取交集得:$\frac{1}{2}$<x≤2.
∴函数y=$\sqrt{2-x}$+lg$\frac{2x-1}{3-x}$的定义域是:{x|$\frac{1}{2}$<x≤2}.
故答案为:{x|$\frac{1}{2}$<x≤2}.
点评 本题考查函数的定义域及其求法,考查分式不等式的解法,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,1) | B. | (-1,2) | C. | (-∞,1)∪(-2,+∞) | D. | (-∞,-2)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com