分析 2a4+a3-2a2-a1=8,公比q>0,a1>0.可得:a1=$\frac{8}{(2q+1)({q}^{2}-1)}$>0,可得q>1.则2a5+a4=${a}_{1}{q}^{3}(2q+1)$=$\frac{8{q}^{3}}{{q}^{2}-1}$=$\frac{8}{\frac{1}{q}-\frac{1}{{q}^{3}}}$,设$\frac{1}{q}$=x∈(0,1),则y=x-x3,利用导数研究其单调性极值与最值即可得出.
解答 解:∵2a4+a3-2a2-a1=8,公比q>0,a1>0.
∴a1(2q3+q2-2q-1)=8,
∴a1=$\frac{8}{(2q+1)({q}^{2}-1)}$>0,可得q>1.
则2a5+a4=${a}_{1}{q}^{3}(2q+1)$=$\frac{8{q}^{3}}{{q}^{2}-1}$=$\frac{8}{\frac{1}{q}-\frac{1}{{q}^{3}}}$,
设$\frac{1}{q}$=x∈(0,1),则y=x-x3,
由y′=1-3x2=$-3(x+\frac{\sqrt{3}}{3})(x-\frac{\sqrt{3}}{3})$0,解得x=$\frac{\sqrt{3}}{3}$.
可得x=$\frac{\sqrt{3}}{3}$时,y取得最大值,ymax=$\frac{2\sqrt{3}}{9}$.
∴2a5+a4的最大值为$\frac{8}{\frac{2\sqrt{3}}{9}}$=12$\sqrt{3}$.
故答案为:12$\sqrt{3}$.
点评 本题考查了等比数列的通项公式及其求和公式、利用导数研究其单调性极值与最值,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{4}{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com