精英家教网 > 高中数学 > 题目详情
2.在各项均为正数的等比数列{an}中,若2a4+a3-2a2-a1=8,则2a5+a4的最小值为12$\sqrt{3}$.

分析 2a4+a3-2a2-a1=8,公比q>0,a1>0.可得:a1=$\frac{8}{(2q+1)({q}^{2}-1)}$>0,可得q>1.则2a5+a4=${a}_{1}{q}^{3}(2q+1)$=$\frac{8{q}^{3}}{{q}^{2}-1}$=$\frac{8}{\frac{1}{q}-\frac{1}{{q}^{3}}}$,设$\frac{1}{q}$=x∈(0,1),则y=x-x3,利用导数研究其单调性极值与最值即可得出.

解答 解:∵2a4+a3-2a2-a1=8,公比q>0,a1>0.
∴a1(2q3+q2-2q-1)=8,
∴a1=$\frac{8}{(2q+1)({q}^{2}-1)}$>0,可得q>1.
则2a5+a4=${a}_{1}{q}^{3}(2q+1)$=$\frac{8{q}^{3}}{{q}^{2}-1}$=$\frac{8}{\frac{1}{q}-\frac{1}{{q}^{3}}}$,
设$\frac{1}{q}$=x∈(0,1),则y=x-x3
由y′=1-3x2=$-3(x+\frac{\sqrt{3}}{3})(x-\frac{\sqrt{3}}{3})$0,解得x=$\frac{\sqrt{3}}{3}$.
可得x=$\frac{\sqrt{3}}{3}$时,y取得最大值,ymax=$\frac{2\sqrt{3}}{9}$.
∴2a5+a4的最大值为$\frac{8}{\frac{2\sqrt{3}}{9}}$=12$\sqrt{3}$.
故答案为:12$\sqrt{3}$.

点评 本题考查了等比数列的通项公式及其求和公式、利用导数研究其单调性极值与最值,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\frac{{a{x^2}+1}}{bx+c}$,且f(1)=2,f(2)=3.
(I)若f(x)是偶函数,求出f(x)的解析式;
(II)若f(x)是奇函数,求出f(x)的解析式;
(III)在(II)的条件下,证明f(x)在区间$(0,\frac{1}{2})$上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果集合P={x|x>-1},那么(  )
A.0⊆PB.{0}∈PC.∅∈PD.{0}?P

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知随机变量X的分布列为P(X=k)=$\frac{1}{{2}^{k}}$,k=1,2,…,则P(2<X≤4)等于$\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将a千克的白糖加水配制成b千克的糖水(b>a>0),则其浓度为$\frac{a}{b}$,若再加入m千克的白糖(m>0),糖水更甜了.根据这一生活常识,提炼一个常1见的不等式:$\frac{a}{b}$<$\frac{a+m}{b+m}$(b>a>0,m>0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知m∈R,设p:对?x∈[-1,1],x2-2x-4m2+8m-2≥0恒成立;q:?x∈[1,2],${log_{\frac{1}{2}}}({x^2}-mx+1)<-1$成立.如果“p∨q”为真,“p∧q”为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某中医研制了一种治疗咳嗽的汤剂,规格是0.25kg/瓶,服用剂量是每次一瓶,治疗时需把汤剂放在热水中加热到t0C才能给病人服用,若把m1kg汤药放入m2kg热水中,待二者温度相同时取出,则汤剂提高的温度t1℃与热水降低的温度t2℃满足关系式m1t1=0.8m2t2,某次治疗时,王护士把x瓶温度为100C汤剂放入温度为90°C、质量为2.5kg的热水中加热,待二者温度相同时取出,恰好适合病人服用.
(1)求x关于t的函数解析式;
(2)若t∈[30,40],问:王护士加热的汤剂最多够多少个病人服用?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$|\overrightarrow b|=3$,$\overrightarrow a$在$\overrightarrow b$方向上的投影是$\frac{2}{3}$,则$\overrightarrow a•\overrightarrow b$为(  )
A.$\frac{1}{3}$B.$\frac{4}{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\sqrt{2-x}$+lg$\frac{2x-1}{3-x}$的定义域是{x|$\frac{1}{2}$<x≤2}.

查看答案和解析>>

同步练习册答案