精英家教网 > 高中数学 > 题目详情
10.已知随机变量X的分布列为P(X=k)=$\frac{1}{{2}^{k}}$,k=1,2,…,则P(2<X≤4)等于$\frac{3}{16}$.

分析 根据随机变量的分布列,写出变量等于3,和变量等于4的概率,要求的概率包括两种情况这两种情况是互斥的,根据互斥事件的概率公式得到结果.

解答 解:∵随机变量X的分布列为P(X=k)=$\frac{1}{{2}^{k}}$,k=1,2,…,
∴P(2<X≤4)=P(X=3)+P(X=4)=$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$=$\frac{3}{16}$.
故答案为$\frac{3}{16}$.

点评 本题考查离散型随机变量的分布列的应用,考查互斥事件的概率,是一个比较简单的分布列问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知f(x)是定义在R上的偶函数,f(1)=1,且对任意x∈R都有f(x+4)=f(x),则f(99)等于(  )
A.-1B.0C.1D.99

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得$\sum_{i=1}^{10}{x_i}=80$,$\sum_{i=1}^{10}{y_i}=20$,$\sum_{i=1}^{10}{{x_i}{y_i}}=184$,$\sum_{i=1}^{10}{x_i^2}=720$.
(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)判断变量x与y之间是正相关还是负相关;
(Ⅲ)若该居民区某家庭月收入为12千元,预测该家庭的月储蓄.
附:线性回归方程$\hat y=\hat bx+\hat a$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}y{\;}_i^{\;}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.其中$\overline x$,$\overline y$为样本平均值,线性回归方程也可写为$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.F1(-4,0)、F2(4,0)为两个定点,P为动点,若|PF1|+|PF2|=8,则动点P的轨迹为(  )
A.椭圆B.直线C.射线D.线段

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面几何中,有“若△ABC的周长c,面积为S,则内切圆半径r=$\frac{2S}{c}$”,类比上述结论,在立体几何中,有“若四面体ABCD的表面积为S,体积为V,则其内切球的半径r=(  )
A.$\frac{3V}{S}$B.$\frac{2V}{S}$C.$\frac{V}{2S}$D.$\frac{V}{3S}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)设二次函数f(x)的图象与y轴交于(0,-3),与x轴交于(3,0)和(-1,0),求函数f(x)的解析式
(2)若f(x+1)=3x-5 求函数f(x)的解析式
(3)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在各项均为正数的等比数列{an}中,若2a4+a3-2a2-a1=8,则2a5+a4的最小值为12$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.分形几何学是数学家伯努瓦曼德尔布罗在20世纪70年代创立的一门新的数学学科.它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图1所示的分形规律可得如图2所示的一个树形图:

易知第三行有白圈5个,黑圈4个.我们采用“坐标”来表示各行中的白圈、黑圈的个数.比如第一行记为(1,0),第二行记为(2,1),第三行记为(5,4).照此规律,第n行中的白圈、黑圈的“坐标”为(xn,yn),则$\underset{lim}{n→∞}$$\frac{{x}_{n}}{{y}_{n}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等比数列{an}的公比q为正数,且a3•a7=4a42,则q=(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案