【题目】“微信运动”是手机
推出的多款健康运动软件中的一款,杨老师的微信朋友圈内有
位好友参与了“微信运动”,他随机选取了
位微信好友(女
人,男
人),统计其在某一天的走路步数.其中,女性好友的走路步数数据记录如下:
5860 8520 7326 6798 7325 8430 3216 7453 11754 9860
8753 6450 7290 4850 10223 9763 7988 9176 6421 5980
男性好友走路的步数情况可分为五个类别:
步)(说明:“
”表示大于等于
,小于等于
.下同),
步),
步),
步),
步及以
),且
三种类别人数比例为
,将统计结果绘制如图所示的条形图.
![]()
若某人一天的走路步数超过
步被系统认定为“卫健型",否则被系统认定为“进步型”.
(1)若以杨老师选取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计杨老师的微信好友圈里参与“微信运动”的
名好友中,每天走路步数在
步的人数;
(2)请根据选取的样本数据完成下面的
列联表并据此判断能否有
以上的把握认定“认定类型”与“性别”有关?
| p> | 卫健型 | 进步型 | 总计 |
男 | 20 | ||
女 | 20 | ||
总计 | 40 |
(3)若从杨老师当天选取的步数大于10000的好友中按男女比例分层选取
人进行身体状况调查,然后再从这
位好友中选取
人进行访谈,求至少有一位女性好友的概率.
附:
,
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)375;(2)见解析;(3)![]()
【解析】分析:(1)根据样本数据男性朋友
类别设为
人,结合
三种类别人数比例为
,即可求得
,从而可得
名好友中每天走路步数在
步的人数;(2)根据所给数据得出列联表,计算观测值
,与临界值比较即可得出结论;(3)根据分层抽样原理,利用列举法求出基本事件数,即可计算所求的概率值.
详解:(1)在样本数据中,男性朋友
类别设为
人,则由题意可知
,可知
,故
类别有
人,
类别有
人,
类别有
人,走路步数在
步的包括
、
两类别共计
人;女性朋友走路步数在
步共有
人.
用样本数据估计所有微信好友每日走路步数的概率分布,则:
人.
(2)根据题意在抽取的
个样本数据的
列联表:
卫健型 | 进步型 | 总计 | |
男 | 14 | 6 | 20 |
女 | 8 | 12 | 20 |
总计 | 22 | 18 | 40 |
得:
,
故没有
以上的把握认为认为“评定类型”与“性别”有关
(3)在步数大于
的好友中分层选取
位好友,男性有:
人,记为
、
、
、
,女性
人记为
;从这
人中选取
人,基本事件是
,
,
,
、
、
、
、
、
、
共
种,这
人中至少有一位女性好友的事件是
,
,
,
共
种,故所求概率
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,右顶点为
,且
过点
,圆
是以线段
为直径的圆,经过点
且倾斜角为
的直线与圆
相切.
(1)求椭圆
及圆
的方程;
(2)是否存在直线
,使得直线
与圆
相切,与椭圆
交于
两点,且满足
?若存在,请求出直线
的方程,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为矩形,平面
平面
,
,
,
,
为
中点.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在棱
上是否存在点
,使得
?若存在,求
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(1)若
,是否存在
,使得
为偶函数,如果存在,请举例并证明,如果不存在,请说明理由;
(2)若
,判断
在
上的单调性,并用定义证明;
(3)已知
,存在
,对任意
,都有
成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目 | 新闻节目 | 总计 | |
20至40岁 | 42 | 16 | 58 |
大于40岁 | 18 | 24 | 42 |
总计 | 60 | 40 | 100 |
(1)用分层抽样方法在收看新闻节目的观众中随机抽取5名观众,则大于40岁的观众应该抽取几名?
(2)由表中数据分析,收看新闻节目的观众是否与年龄有关?
(3)在第(1)中抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.
(提示:
,其中
.当
时,有
的把握判定两个变量有关联;当
时,有
的把握判定两个变量有关联;当
时,有
的把握判定两个变量有关联.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列命题的真假:
(1)点P到圆心O的距离大于圆的半径是点P在
外的充要条件;
(2)两个三角形的面积相等是这两个三角形全等的充分不必要条件;
(3)
是
的必要不充分条件;
(4)x或y为有理数是xy为有理数的既不充分又不必要条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com