精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆的左、右焦点分别为.已知点在椭圆上,且点M到两焦点距离之和为4.

1)求椭圆的方程;

2)设与MOO为坐标原点)垂直的直线交椭圆于ABAB不重合),求的取值范围.

【答案】12

【解析】

1)由M到两焦点距离之和为4可得a,再将M代入方程可得b即可得到椭圆方程;

2)由已知可设AB的方程为联立椭圆方程得到根与系数的关系,以及m的范围,将其代入中计算即可得到答案.

解:(1椭圆的左、右焦点分别为.

在椭圆上,且点M到两焦点距离之和为4

椭圆方程为

把点代入,得,解得

椭圆的方程为.

2

MOO为坐标原点)垂直的直线交椭圆于ABAB不重合),

AB的方程为

联立,消去y,得:

解得

,则

∴求的取值范围是.

【点晴】

本题考查直线与椭圆的位置关系,涉及到向量的数量积的运算,考查学生数学运算能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】珠算之父程大位是我国明代著名的数学家,他的应用巨著《算法统综》中有一首竹筒容米问题:家有九节竹一茎,为因盛米不均平,下头三节四升五,上梢四节三升八,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节竹的容积为

A. 2.2B. 2.3

C. 2.4D. 2.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100/平方米,底面的建造成本为160/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).

1)将V表示成r的函数Vr),并求该函数的定义域;

2)讨论函数Vr)的单调性,并确定rh为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年初,由于疫情影响,开学延迟,为了不影响学生的学习,国务院、省市区教育行政部门倡导各校开展“停学不停课、停学不停教”,某校语文学科安排学生学习内容包含老师推送文本资料学习和视频资料学习两类,且这两类学习互不影响已知其积分规则如下:每阅读一篇文本资料积1分,每日上限积5;观看视频1个积2分,每日上限积6分.经过抽样统计发现,文本资料学习积分的概率分布表如表1所示,视频资料学习积分的概率分布表如表2所示.

1

文本学习积分

1

2

3

4

5

概率

2

视频学习积分

2

4

6

概率

1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;

2)现随机抽取3人了解学习情况,设积分不低于9分的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数,上的奇函数,且.

1)求的表达式;

2)判断并证明的单调性;

3)若存在使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C经过伸缩变换得到曲线E,直线t为参数)与曲线E交于AB两点.

1)设曲线C上任一点为,求的最小值;

2)求出曲线E的直角坐标方程,并求出直线l被曲线E截得的弦AB长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在疫情这一特殊时期,教育行政部门部署了停课不停学的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:

)是否有的把握认为高三学生的这次摸底考试数学成绩与其在线学习时长有关

)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望和方差.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】回文数是指从左到右读与从右到左读都一样的正整数,如11,323,4334等.在所有小于150的三位回文数中任取两个数,则两个回文数的三位数字之和均大于3的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的极值点个数;

(2)若,证明 .

查看答案和解析>>

同步练习册答案