精英家教网 > 高中数学 > 题目详情

【题目】已知函数上的偶函数,上的奇函数,且.

1)求的表达式;

2)判断并证明的单调性;

3)若存在使得不等式成立,求实数的取值范围.

【答案】1;(2上单调递增,证明见解析;(3.

【解析】

1)根据函数的奇偶性列出两个方程,解出即可;

2)根据函数单调性的定义,取值、作差、变形、定号、下结论即可证出;

3)先将不等式化为,再换元,

,然后分参转化为,最后求出的最大值,即得实数的取值范围.

1)因为①,将换为,代入上式得

由于是偶函数,是奇函数,所以

②,

由①②可解得,

2上单调递增.

证明如下:任取

因为当时,,所以

所以上单调递增.

3)由题意可得

,由可得,则

即原命题等价于存在使得成立,

分离参变量得,只需即可.

又因为,所以,即

所以,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知为抛物线上一点,斜率分别为的直线PAPB分别交抛物线于点AB(不与点P重合).

1)证明:直线AB的斜率为定值;

2)若△ABP的内切圆半径为.

i)求△ABP的周长(用k表示);

ii)求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四面体中,是正三角形,是直角三角形,的中点,且.

(1)求证:平面

(2)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年高考总成绩由语数外三门统考科目和物理、化学等六门选考科目组成,将每门选考科目的考生原始成绩从高到低划分为8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%7%16%24%24%16%7%3%,选考科目成绩计入考生总成绩时,将AE等级内的考生原始成绩,依照等比例转换法则,分别转换到八个分数区间,得到考生的等级成绩.某市高一学生共6000人,为给高一学生合理选科提供依据,对六门选考科目进行测试,其中化学考试原始成绩大致服从正态分布

1)求该市化学原始成绩在区间的人数;

2)以各等级人数所占比例作为各分数区间发生的概率,按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间的人数,求

(附:若随机变量,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线l的极坐标方程为,曲线C的参数方程为(为参数).

若曲线上存在MN两点关于直线l对称,求实数m的值;

若直线与曲线相交于PQ两点,且,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为.已知点在椭圆上,且点M到两焦点距离之和为4.

1)求椭圆的方程;

2)设与MOO为坐标原点)垂直的直线交椭圆于ABAB不重合),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)

分数

甲班频数

乙班频数

(Ⅰ)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?

甲班

乙班

总计

成绩优秀

成绩不优秀

总计

(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.

参考公式:,其中

临界值表

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,两两垂直,分别是的中点.

1)证明:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:

(1)根据频率分布直方图计算该种蔬果日需求量的平均数(同一组中的数据用该组区间中点值代表);

(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为公斤,利润为元.求关于的函数关系式,并结合频率分布直方图估计利润不小于1750元的概率.

查看答案和解析>>

同步练习册答案