精英家教网 > 高中数学 > 题目详情
16.如图,△AOB为等腰直角三角形,OA=1,OC为斜边AB的高,点P在射线OC上,则$\overrightarrow{AP}•\overrightarrow{OP}$的最小值为(  )
A.-1B.-$\frac{1}{8}$C.-$\frac{1}{4}$D.-$\frac{1}{2}$

分析 根据平面向量的线性运算与数量积运算,设|$\overrightarrow{OP}$|=t,利用t表示$\overrightarrow{AP}$•$\overrightarrow{OP}$,求二次函数的最小值即可.

解答 解:由$\overrightarrow{AP}$=$\overrightarrow{OP}$-$\overrightarrow{OA}$,
设|$\overrightarrow{OP}$|=t,t≥0,
则$\overrightarrow{AP}$•$\overrightarrow{OP}$=${\overrightarrow{OP}}^{2}$-$\overrightarrow{OA}$•$\overrightarrow{OP}$
=t2-1×t×cos$\frac{π}{4}$
=t2-$\frac{\sqrt{2}}{2}$t
=${(t-\frac{\sqrt{2}}{4})}^{2}$-$\frac{1}{8}$;
所以,当t=$\frac{\sqrt{2}}{4}$时,$\overrightarrow{AP}$•$\overrightarrow{OP}$取得最小值为-$\frac{1}{8}$.
故选:B.

点评 本题考查了平面向量的三角形法则,向量数量积的运算性质以及二次函数的单调性问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=4x,O是原点,A,B为抛物线上两动点,且满足OA⊥OB,若OM⊥AB于M点.
(Ⅰ)求M的轨迹方程.
(Ⅱ)过点F(1,0)作互相垂直的两条直线l1,l2,分别交抛物线C于点P、Q和点K、L.设线段PQ,KL的中点分别为R、T,求证:直线RT恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.湛江成功申办2014年广东省第十四届运动会.为做好承办工作,决定选拔3名专业人士加入组委会.经过初选确定4男2女为候选人,每位候选人当选的机会相等.记ξ为女专业人士当选人数.
(1)求ξ=0的概率; 
(2)求ξ的分布列及Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC中,$\overrightarrow{AB}•\overrightarrow{AC}=0,|\overrightarrow{AB}|=|\overrightarrow{AC}$|=2,M是BC的中点,P点在△ABC内部或其边界上运动,则$\overrightarrow{AM}$•$\overrightarrow{CP}$的取值范围是(  )
A.[0,2]B.[1,2]C.[-2,0]D.[-2,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图几何体由前向后方向的正投影面是平面EFGH,则该几何体的主视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(x2+1)(x-$\frac{1}{x}$)6的展开式的常数项是-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=3-2t}\end{array}$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}sin(θ+\frac{π}{4})$,则直线l与曲线C相交的弦长为$\frac{2\sqrt{30}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某几何体的三视图及相应尺寸(单位:cm)如图所示,则该几何体的体积为$\frac{8}{3}$(cm3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线C:y2=4x的交点为F,准线为l,p为抛物线C上一点,且P在第一象限,PM⊥l交C于点M,线段MF为抛物线C交于点N,若PF的斜率为$\frac{3}{4}$,则$\frac{|MN|}{|NF|}$=$\sqrt{5}$.

查看答案和解析>>

同步练习册答案