精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,△ABC是边长为2的等边三角形,AA1⊥平面ABC,D,E分别是CC1,AB的中点.
(1)求证:CE∥平面A1BD;
(2)若H为A1B上的动点,CH与平面A1AB所成的最大角的正切值为
15
2
,求侧棱AA1的长.
考点:直线与平面所成的角,直线与平面平行的判定
专题:综合题,空间位置关系与距离,空间角
分析:(1)通过补形,延长延长A1D交AC的延长线于点F,连接BF,从而可证明CE∥BF,然后由线面平行的判定定理得证;
(2)由已知找出C点在平面A1AB上的射影CE,CE为定值,要使直线CH与平面A1AB所成最大角的正切值为
15
2
,则点H到E点的距离应最小,由此得到H的位置,进一步求出EH的长度,则在直角三角EHB中可得到BH的长度,由平几相似关系得AA1
解答: (1)证明:延长A1D交AC的延长线于点F,连接BF.
∵CD∥AA1,且CD=
1
2
AA1
∴C为AF的中点.
∵E为AB的中点,
∴CE∥BF.
∵BF?平面A1BD,CE?平面A1BD,
∴CE∥平面A1BD.
(2)解:∵AA1⊥面ABCCE?面ABC,∴AA1⊥CE
又△ABC等边,E是中点,
CE⊥AB,CE=
3
2
AB=
3

∴CE⊥面AA1B,连接EH,则∠EHC为CH与平面AA1B所成的角.
在Rt△CEH中,tan∠EHC=
CE
EH
=
3
EH

∴EH最短时∠EHC最大
此时,EH⊥A1B,
tan∠EHC=
CE
EH
=
3
EH
=
15
2
,∴EH=
2
5
5

由平几相似关系得AA1=4.
点评:本小题主要考查空间线面位置关系、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法.是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某公司在一次年会上举行了有奖问答活动,会议组织者准备了10道题目,其中6道选择题,4道填空题,公司一职员从中任取3道题解答.
(1)求该职员至少取到1道填空题的概率;
(2)已知所取的3道题中有2道选择题,道填空题.设该职员答对选择题的概率都是
4
5
,答对每道填空题的概率都是
3
5
,且各题答对与否相互独立.用X表示该职员答对题的个数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在(2x+
1
x2
n的展开式中,第三项的二项式系数比第二项的二项式系数大27,求展开式中的常数项及系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列an的公比为q>1,又a172=a24,求使a1+a2+…+an
1
a1
+
1
a2
+
1
a3
+…+
1
an
成立的自然数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的边AB所在直线的方程为x-3y-6=0,M(2,0)满足
BM
=
MC
,点T(-1,1)在AC边所在直线上且满足
AT
AB
=0.
(1)求AC边所在直线的方程.
(2)求△ABC外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:xy=1,现将曲线C绕坐标原点逆时针旋转45°,求所得曲线C′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥.已知一个正六棱锥的各个顶点都在半径为3的球面上,则该正六棱锥的体积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+1,x≤1
2x,x>1
,若f(m)=4,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若θ∈R,则方程
.
2sin2θ1
11
.
=0的解为
 

查看答案和解析>>

同步练习册答案