精英家教网 > 高中数学 > 题目详情
某公司在一次年会上举行了有奖问答活动,会议组织者准备了10道题目,其中6道选择题,4道填空题,公司一职员从中任取3道题解答.
(1)求该职员至少取到1道填空题的概率;
(2)已知所取的3道题中有2道选择题,道填空题.设该职员答对选择题的概率都是
4
5
,答对每道填空题的概率都是
3
5
,且各题答对与否相互独立.用X表示该职员答对题的个数,求X的分布列和数学期望.
考点:离散型随机变量的期望与方差,古典概型及其概率计算公式
专题:概率与统计
分析:(1)利用对立事件概率公式能求出该职员至少取到1道填空题的概率.
(2)由题意可知X的所有可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.
解答: 解:(1)设事件A=“该职员至少取到1道填空题”,
则有
.
A
=“该职员所取的3道题都是填空题”,
因为P(
.
A
)=
C
3
6
C
3
10
=
1
6

所以P(A)=1-P(
.
A
)=
5
6

∴该职员至少取到1道填空题的概率是
5
6
.…(4分)
(2)由题意可知X的所有可能取值为0,1,2,3.…(5分)
P(X=0)=
C
0
2
(
4
5
)0(
1
5
)2
2
5
=
2
125
…(6分)
P(X=1)=
C
1
2
(
4
5
)1(
1
5
)1
2
5
+
C
0
2
(
4
5
)0(
1
5
)2
3
5
=
19
125

P(X=2)=
C
2
2
(
4
5
)2(
1
5
)0
2
5
+
C
1
2
(
4
5
)1(
1
5
)1
3
5
=
56
125

P(X=3)=
C
2
2
(
4
5
)2(
1
5
)0
3
5
=
48
125
…(9分)
X0123
P
2
125
19
125
56
125
48
125
…(10分)
所以E(X)=0×
2
125
+1×
19
125
+2×
56
125
+3×
48
125
=
11
5
.…(12分)
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期限,是中档题,在历年高考中考都是必考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出定义在(0,+∞)上的三个函数:f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,已知g(x)在x=1处取极值.
(Ⅰ)求实数a的值,并确定函数h(x)的单调性;
(Ⅱ)求证:当1<x<e2时,恒有x<
2+f(x)
2-f(x)
成立;
(Ⅲ)若函数y=m-g(x)在[
1
e
,e]上有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(α-π)=2cos(α-2π),求
sin(7π-α)+5cos(2π-α)
3sin(
2
+α)-sin(-α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=(m+1)x2-2(m+1)x-m的最值,其中m为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-t(x+1).
(1)若f(x)≥0对一切正实数x恒成立,求t的取值范围;
(2)设g(x)=f(x)+
t
ex
,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的t≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(3)求证:1n+2n+…+(n-1)n≤nn(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图,四棱锥S-ABCD底面为平行四边形,E、F分别为边AD、SB中点,
(1)求证:EF∥平面SDC.
(2)AB=SC=1,EF=
3
2
,求EF与SC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋子中共有12个球,其中有5个黑球,4个白球,3个红球,从中任取2个球(假设取到每个球的可能性都相同).已知每取到一个黑球得0分,每取到一个白球得1分,每取到一个红球得2分.用ξ表示任取2个球的得分的差的绝对值.
(1)求椭机变量ξ的分布列及ξ的数学期望Eξ;
(2)记“不等式ξx2-ξx+
1
2
>0的解集是实数集R”为事件A,求事件A发生的概率P(A).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinωx-cosωx,sinωx),
b
=(sinωx+cosωx,
3
cosωx).设函数f(x)=
a
b
+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(
1
2
,1).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(
π
5
,0),求函数f(x)在区间[0,
π
2
]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,△ABC是边长为2的等边三角形,AA1⊥平面ABC,D,E分别是CC1,AB的中点.
(1)求证:CE∥平面A1BD;
(2)若H为A1B上的动点,CH与平面A1AB所成的最大角的正切值为
15
2
,求侧棱AA1的长.

查看答案和解析>>

同步练习册答案