精英家教网 > 高中数学 > 题目详情
已知平面向量
a
b
满足|
a
|=|
b
|=2,(
a
+2
b
)•(
a
-
b
)=-2,则
a
b
的夹角为(  )
A、
π
6
B、
π
3
C、
3
D、
6
考点:平面向量数量积的运算
专题:平面向量及应用
分析:
a
b
的夹角为θ,由题意可得4+2×2×cosθ-2×4=-2,解得cosθ的值,再结合θ∈[0,π],求得θ的值.
解答: 解:设
a
b
的夹角为θ,由题意可得
a
2
+
a
b
-2b2=-2,
即4+2×2×cosθ-2×4=-2,解得cosθ=
1
2

再结合θ∈[0,π],∴θ=
π
3

故选:B.
点评:本题主要考查两个向量的数量积的定义,根据三角函数的值求角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、直角坐标系中横、纵坐标相等的点能够组成一个集合
B、π∈{x|x<3,x∈R}
C、∅={0}
D、{(1,2)}⊆{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,BH⊥CD于点H,BH交AC于点E,已知|
BE
|=3,
AB
2
-
AC
AE
+
AC
BE
-
CB
AE
=15,则
AE
EC
,则λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
(x+a)2+(y+b)2>1,a,b∈{1,-1}
x≥-1
y≤1
表示的平面区域的面积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|x<1},集合N={y|y>0},则M∩N=(  )
A、{x|x<1}
B、{x|x>1}
C、{x|0<x<1}
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数z=
3-i
1+i
(i为虚数单位)的共轭复数等于(  )
A、1+2iB、1-2i
C、1+3iD、-1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:

如果直线3x-
3
y+m=0与双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)恒有两个公共点,则双曲线C的离心率的取值范围是(  )
A、(1,2)
B、(2,+∞)
C、(1,2]
D、[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直线l1:y=4x+m,(m<0)与抛物线C1:y=2ax2,(a>0)和圆C2x2+(y+1)2=17都相切,F是抛物线C1的焦点.
(Ⅰ)求m与a的值;
(Ⅱ)设A是C1上的一动点,以A为切点作抛物线C1的切线l,直线l交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知动点P与平面上两定点M(-1,0),N(1,0)连线的斜率的积为定值-4,设点P的轨迹为C.
(1)求出曲线C的方程;
(2)设直线y=kx+1与C交于A,B两点,若
OA
OB
,求k的值.

查看答案和解析>>

同步练习册答案