分析 先求出两条动直线经过的定点A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再根据直角三角形斜边的中线等于斜边的一半,求出PC.
解答 解:由题意可知,动直线x+my=0经过定点A(0,0),
动直线mx-y-m+3=0即m(x-1)-y+3=0,经过点定点B(1,3),
注意到动直线x+my=0和动直线mx-y-m+3=0始终垂直,P又是两条直线的交点,
则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.
根据直角三角形斜边的中线等于斜边的一半,得|PC|=$\frac{\sqrt{10}}{2}$.
故答案为:$\frac{\sqrt{10}}{2}$.
点评 本题考查了直线恒过定点的应用问题,特别是“两条直线相互垂直”这一特征是解题的突破口,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | -2或6 | B. | 0或4 | C. | -1 或$\sqrt{3}$ | D. | -1或3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$±\sqrt{2}$x | B. | y=±2x | C. | y=±$\sqrt{3}$x | D. | y=±2$\sqrt{2}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y′=3sin$\frac{1}{2}$x′ | B. | y′=$\frac{1}{3}$sin2x′ | C. | y′=$\frac{1}{2}$sin2x′ | D. | y′=3sin2x′ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com