精英家教网 > 高中数学 > 题目详情
15.将正弦曲线y=sinx作如下变换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=3y}\end{array}\right.$得到的曲线方程为(  )
A.y′=3sin$\frac{1}{2}$x′B.y′=$\frac{1}{3}$sin2x′C.y′=$\frac{1}{2}$sin2x′D.y′=3sin2x′

分析 根据伸缩变换的关系,利用代入法进行化简求解即可求得答案.

解答 解:由 $\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=3y}\end{array}\right.$,得 $\left\{\begin{array}{l}{x={2x}^{′}}\\{y=\frac{1}{3}y′}\end{array}\right.$,代入y=sinx得$\frac{1}{3}$y′=sin2x′,
即y′=3sin2x′,
故选:D.

点评 本题主要考查曲线和对称的变换,根据伸缩变换的关系,利用代入法是解决本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P,若AB的中点为C,则|PC|=$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.
(1)求△ABC的面积S.
(2)若b+c=6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\frac{3sinα-cosα}{2sinα+3cosα}$=$\frac{5}{7}$.
(1)求tan($\frac{π}{2}$-α)的值;
(2)求3cosα•sin(α+π)+2cos2(α+$\frac{π}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某同学上学途中必须经过A,B,C,D四个交通岗,其中在A,B岗遇到红灯的概率均为$\frac{1}{2}$,在C,D岗遇到红灯的概率均为$\frac{1}{3}$.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.
(1)若X≥3,就会迟到,求张华不迟到的概率;
(2)求X的分布列及EX.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在同一平面直角坐标系中,直线x-2y=2经过伸缩变换$\left\{\begin{array}{l}x'=x\\ y'=2y\end{array}\right.$变成直线l,则直线l的方程是x-y-2=0..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某福彩中心准备发行一种面值为2元的福利彩票刮刮卡,设计方案如下:
①该福利彩票中奖概率为0.2;
②每张中奖彩票的中奖奖金有5元,10元和100元三种;
③顾客购买一张彩票,获得10元奖金的概率为0.08,获得100元奖金的概率为p.
(1)若某顾客每天都买一张该类型的福利彩票,求其在第3天才中奖的概率;
(2)福彩中心为了能够筹得资金资助福利事业持续发展,应如何设定P的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={a,a2},B={1,b},若A=B,则a+b=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{{e}^{x}}{x}$+a(x-lnx).(e为自然对数的底数)
(Ⅰ)当a>0时,试求 f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈($\frac{1}{2}$,2)上有三个不同的极值点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案