精英家教网 > 高中数学 > 题目详情
10.某同学上学途中必须经过A,B,C,D四个交通岗,其中在A,B岗遇到红灯的概率均为$\frac{1}{2}$,在C,D岗遇到红灯的概率均为$\frac{1}{3}$.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.
(1)若X≥3,就会迟到,求张华不迟到的概率;
(2)求X的分布列及EX.

分析 (1)根据排列组合公式计算P(X=3),P(X=4),使用对立事件公式得出不迟到的概率;
(2)依次计算X取各种可能取值的概率,得出分布列,代入公式计算数学期望.

解答 解:(1)P(X=3)=C${\;}_{2}^{1}$($\frac{1}{2}$)2($\frac{1}{3}$)2+C${\;}_{2}^{1}$($\frac{1}{2}$)2$•\frac{1}{3}•\frac{2}{3}$=$\frac{1}{6}$,
P(X=4)=($\frac{1}{2}$)2($\frac{1}{3}$)2=$\frac{1}{36}$,
∴P(X≤2)=1-P(X=3)-P(X=4)=$\frac{29}{36}$.
∴张华不迟到的概率为$\frac{29}{36}$.
(2)X的可能取值为0,1,2,3,4.
$P({X=0})={({\frac{1}{2}})^2}{({1-\frac{1}{3}})^2}=\frac{1}{9}$,$P({X=1})=C_2^1{({\frac{1}{2}})^2}{({1-\frac{1}{3}})^2}+{({\frac{1}{2}})^2}C_2^1({\frac{1}{3}})({1-({\frac{1}{3}})})=\frac{1}{3}$,
$P({X=2})=1-({\frac{1}{9}+\frac{1}{3}+\frac{1}{6}+\frac{1}{36}})=\frac{13}{36}$,又P(X=3)=$\frac{1}{6}$,P(X=4)=$\frac{1}{36}$.
∴X的分布列为

X01234
P$\frac{1}{9}$$\frac{1}{3}$$\frac{13}{36}$$\frac{1}{6}$$\frac{1}{36}$
∴EX=0×$\frac{1}{9}$+1×$\frac{1}{3}$+2×$\frac{13}{36}$+3×$\frac{1}{6}$+4×$\frac{1}{36}$=$\frac{5}{3}$.

点评 本题考查了排列组合公式,概率计算,分布列及数学期望,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.抛物线y2=4x的准线与双曲线$\frac{x^2}{4}-\frac{y^2}{3}=1$渐近线围成三角形的面积为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,则n<m+1的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=xlnx,则该函数在其定义域内(  )
A.无极值点B.极大值点是$\frac{1}{e}$
C.既有极大值点又有极小值点D.极小值点是$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x),若对于任意的x∈R,都有f(-$\frac{1}{2}$-x)=f(-$\frac{1}{2}$+x),且f(-$\frac{1}{2}$)=-$\frac{9}{4}$,f(0)=-2.
(1)求f(x)的解析式;
(2)若方程f(cosθ)=$\sqrt{2}$sin(θ+$\frac{π}{4}$)+msinθ有实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将正弦曲线y=sinx作如下变换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=3y}\end{array}\right.$得到的曲线方程为(  )
A.y′=3sin$\frac{1}{2}$x′B.y′=$\frac{1}{3}$sin2x′C.y′=$\frac{1}{2}$sin2x′D.y′=3sin2x′

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知两点F1(-5,0),F2(5,0),到它们的距离的差的绝对值是6的点M的轨迹是以F1(-5,0),F2(5,0),为焦点,以实轴长为6的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=n-1,x∈[n,n+1),n∈N,则满足方程f(x)=log2x根的个数是(  )
A.1 个B.2 个C.3 个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知将函数f(x)=tan(ωx+$\frac{π}{3}}$)(2<ω<10)的图象向右平移$\frac{π}{6}$个单位之后与f(x)的图象重合,则ω=(  )
A.9B.6C.4D.8

查看答案和解析>>

同步练习册答案