精英家教网 > 高中数学 > 题目详情
在四棱锥中,侧面底面,,底面是直角梯形,,,,

(1)求证:平面;
(2)设为侧棱上一点,,试确定的值,使得二面角
(1)平详见解析;(2).

试题分析:平面底面,所以平面,所以,故可以为原点建立空间直角坐标系.根据题中所给数据可得,
(1)由数量积为0,可得由此得,由此得平面.(2) 由于平面,所以平面的法向量为.由可得,所以.又.设平面的法向量为
,,取.由于二面角,所以,解此方程可得的值.
试题解析:(1)平面底面,,所以平面,
所以,以为原点建立空间直角坐标系.

,,所以,,
又由平面,可得,所以平面
(2)平面的法向量为
,,所以
设平面的法向量为,,
,,得 所以,,所以
所以,注意到,得.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB ≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.

(1)求证:AD⊥平面CFG;
(2)求平面BCP与平面DCP的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD.

⑴确定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,侧面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,

(1)求证:BC平面PBD:
(2)求直线AP与平面PDB所成角的正弦值;
(3)设E为侧棱PC上异于端点的一点,,试确定的值,使得二面角E-BD-P的余弦值为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱⊥底面的中点,作于点

(1)证明平面
(2)证明平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2。

(1)求证:BC⊥平面A1DC;
(2)若CD=2,求BE与平面A1BC所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1

(1)证明:AB=AC
(2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若abc三个向量共面,则实数λ等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点A(1,2,1),B(-1,3,4),D(1,1,1),若=2,则||的值是______.

查看答案和解析>>

同步练习册答案