·ÖÎö £¨¢ñ£©ÀûÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°ÏÒ³¤¹«Ê½ÇóµÃØGHØ£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½ÇóµÃ¡÷OGHµÄÃæ»ý£¬ÇóµÃ1+4k2-2m2=0£¬¸ù¾ÝÖеã×ø±ê¹«Ê½¼°Ö±ÏßµÄбÂʹ«Ê½ÇóµÃsºÍtµÄÖµ£¬Ê¹µÃÖ±ÏßPM£¬PNµÄбÂÊÖ®»ýΪ¶¨Öµ£¬¶¨ÖµÎª$-\frac{1}{4}$£®
½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒâÖª$e=\frac{{\sqrt{3}}}{2}$£¬Ôò${e^2}=\frac{c^2}{a^2}-\frac{{{a^2}-{b^2}}}{a^2}=\frac{3}{4}$£¬¼´a2=4b2£®
ÓÖÒÔÔµãΪԲµã£¬ÍÖÔ²CµÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄԲΪÓÉÔ²x2+y2=b2£¬
ÓÉÔ²x2+y2=b2ÓëÖ±Ïß$x-y+\sqrt{2}=0$ÏàÇУ¬µÃ$b=\frac{{\sqrt{2}}}{{\sqrt{{1^2}+{{£¨{-1}£©}^2}}}}=1$£®
ËùÒÔa2=4b2=4£®
ÓÚÊÇËùÇóÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+y=1$£®
£¨¢ò£©ÉèÖ±Ïßl£ºy=kx+m£¨m¡Ù0£©£¬G£¨x1£¬y1£©£¬H£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨1+4k2£©x2+8kmx+4m2-4=0£®
Ôò$¡÷={£¨{8km}£©^2}-4£¨{1+4{k^2}}£©£¨{4{m^2}-4}£©=16£¨{4{k^2}+1-{m^2}}£©£¾0£¬{x_1}+{x_2}=-\frac{8km}{{1+4{k^2}}}£¬{x_1}{x_2}=\frac{{4{m^2}-4}}{{1+4{k^2}}}$£®
¸ù¾ÝÏÒ³¤¹«Ê½ÖªØGHØ=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{\sqrt{1+{k}^{2}}•\sqrt{4{k}^{2}+1-{m}^{2}}}{1+4{k}^{2}}$
ÓÖ¸ù¾Ýµãµ½Ö±ÏߵľàÀ빫ʽ֪ԵãOµ½Ö±Ïßy=kx+mµÄ¾àÀëΪ$d=\frac{|m|}{{\sqrt{1+4{k^2}}}}$£®
ÓÚÊÇ¡÷OGHµÄÃæ»ýΪ$S=\frac{1}{2}•|{GH}|•\frac{|m|}{{\sqrt{1+4{k^2}}}}=\frac{{2|m|•\sqrt{4{k^2}+1-{m^2}}}}{{1+4{k^2}}}=1$£®
ÕûÀíµÃ£¨1+4k2-2m2£©2=0£¬ËùÒÔ1+4k2-2m2=0£®¢Ù
ÓÖÏß¶ÎGHµÄÖеã$P£¨{-\frac{4km}{{1+4{k^2}}}£¬\frac{m}{{1+4{k^2}}}}£©$£¬¼´$P£¨{-\frac{2k}{m}£¬\frac{1}{2m}}£©$£®
¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄ¶¨µãM£¬N£¬²»·ÁÉèM£¨s£¬0£©£¬N£¨-s£¬0£©£¨s£¾0£©£¬
Ö±ÏßPM£¬PNµÄбÂÊÖ®»ýΪt£¬
ÔòÓÐ$t={k_{PM}}•{k_{PN}}=\frac{{\frac{1}{2m}}}{{-\frac{2k}{3}-s}}¡Á\frac{{\frac{1}{2m}}}{{-\frac{2k}{m}+s}}$=$\frac{1}{{4£¨{4{k^2}-{s^2}{m^2}}£©}}$£¬
½âµÃ$\left\{\begin{array}{l}{s=\sqrt{2}}\\{t=-\frac{1}{4}}\end{array}\right.$£®
¡à´æÔÚÁ½¶¨µã$M£¨{-\sqrt{2}£¬0}£©£¬N£¨{\sqrt{2}£¬0}£©$£¬Ê¹µÃÖ±ÏßPM£¬PNµÄбÂÊÖ®»ýΪ¶¨Öµ£¬¶¨ÖµÎª$-\frac{1}{4}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½¼°Ö±ÏßµÄбÂʹ«Ê½µÄ×ÛºÏÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -1 | B£® | 1 | C£® | $\frac{10}{3}$ | D£® | $\frac{11}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{4}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{2}$ | D£® | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com