5£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬×ó£¬ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÒÔÔ­µãΪԲÐÄ£¬ÍÖÔ²CµÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïß$x-y+\sqrt{2}=0$ÏàÇУ®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èô²»¹ýÔ­µãÇÒбÂÊ´æÔÚµÄÖ±Ïßl½»ÍÖÔ²CÓÚµãG£¬H£¬ÇÒ¡÷OGHµÄÃæ»ýΪ1£¬Ïß¶ÎGHµÄÖеãΪP£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚ¹ØÓÚÔ­µã¶Ô³ÆµÄÁ½¸ö¶¨µãM£¬N£¬Ê¹µÃÖ±ÏßPM£¬PNµÄбÂÊÖ®»ýΪ¶¨Öµ£¿Èô´æÔÚ£¬Çó³öÁ½¶¨µãM£¬NµÄ×ø±êºÍ¶¨ÖµµÄ´óС£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÀûÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°ÏÒ³¤¹«Ê½ÇóµÃØ­GHØ­£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½ÇóµÃ¡÷OGHµÄÃæ»ý£¬ÇóµÃ1+4k2-2m2=0£¬¸ù¾ÝÖеã×ø±ê¹«Ê½¼°Ö±ÏßµÄбÂʹ«Ê½ÇóµÃsºÍtµÄÖµ£¬Ê¹µÃÖ±ÏßPM£¬PNµÄбÂÊÖ®»ýΪ¶¨Öµ£¬¶¨ÖµÎª$-\frac{1}{4}$£®

½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒâÖª$e=\frac{{\sqrt{3}}}{2}$£¬Ôò${e^2}=\frac{c^2}{a^2}-\frac{{{a^2}-{b^2}}}{a^2}=\frac{3}{4}$£¬¼´a2=4b2£®
ÓÖÒÔÔ­µãΪԲµã£¬ÍÖÔ²CµÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄԲΪÓÉÔ²x2+y2=b2£¬
ÓÉÔ²x2+y2=b2ÓëÖ±Ïß$x-y+\sqrt{2}=0$ÏàÇУ¬µÃ$b=\frac{{\sqrt{2}}}{{\sqrt{{1^2}+{{£¨{-1}£©}^2}}}}=1$£®
ËùÒÔa2=4b2=4£®
ÓÚÊÇËùÇóÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+y=1$£®
£¨¢ò£©ÉèÖ±Ïßl£ºy=kx+m£¨m¡Ù0£©£¬G£¨x1£¬y1£©£¬H£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨1+4k2£©x2+8kmx+4m2-4=0£®
Ôò$¡÷={£¨{8km}£©^2}-4£¨{1+4{k^2}}£©£¨{4{m^2}-4}£©=16£¨{4{k^2}+1-{m^2}}£©£¾0£¬{x_1}+{x_2}=-\frac{8km}{{1+4{k^2}}}£¬{x_1}{x_2}=\frac{{4{m^2}-4}}{{1+4{k^2}}}$£®
¸ù¾ÝÏÒ³¤¹«Ê½ÖªØ­GHØ­=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{\sqrt{1+{k}^{2}}•\sqrt{4{k}^{2}+1-{m}^{2}}}{1+4{k}^{2}}$
ÓÖ¸ù¾Ýµãµ½Ö±ÏߵľàÀ빫ʽ֪ԭµãOµ½Ö±Ïßy=kx+mµÄ¾àÀëΪ$d=\frac{|m|}{{\sqrt{1+4{k^2}}}}$£®
ÓÚÊÇ¡÷OGHµÄÃæ»ýΪ$S=\frac{1}{2}•|{GH}|•\frac{|m|}{{\sqrt{1+4{k^2}}}}=\frac{{2|m|•\sqrt{4{k^2}+1-{m^2}}}}{{1+4{k^2}}}=1$£®
ÕûÀíµÃ£¨1+4k2-2m2£©2=0£¬ËùÒÔ1+4k2-2m2=0£®¢Ù
ÓÖÏß¶ÎGHµÄÖеã$P£¨{-\frac{4km}{{1+4{k^2}}}£¬\frac{m}{{1+4{k^2}}}}£©$£¬¼´$P£¨{-\frac{2k}{m}£¬\frac{1}{2m}}£©$£®
¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄ¶¨µãM£¬N£¬²»·ÁÉèM£¨s£¬0£©£¬N£¨-s£¬0£©£¨s£¾0£©£¬
Ö±ÏßPM£¬PNµÄбÂÊÖ®»ýΪt£¬
ÔòÓÐ$t={k_{PM}}•{k_{PN}}=\frac{{\frac{1}{2m}}}{{-\frac{2k}{3}-s}}¡Á\frac{{\frac{1}{2m}}}{{-\frac{2k}{m}+s}}$=$\frac{1}{{4£¨{4{k^2}-{s^2}{m^2}}£©}}$£¬
½âµÃ$\left\{\begin{array}{l}{s=\sqrt{2}}\\{t=-\frac{1}{4}}\end{array}\right.$£®
¡à´æÔÚÁ½¶¨µã$M£¨{-\sqrt{2}£¬0}£©£¬N£¨{\sqrt{2}£¬0}£©$£¬Ê¹µÃÖ±ÏßPM£¬PNµÄбÂÊÖ®»ýΪ¶¨Öµ£¬¶¨ÖµÎª$-\frac{1}{4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½¼°Ö±ÏßµÄбÂʹ«Ê½µÄ×ÛºÏÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑ֪ʵÊýx£¬yÂú×ã²»µÈʽ×é$\left\{\begin{array}{l}{x-y+3¡Ý0}\\{2x+y-4¡Ü0}\\{y+a¡Ý0}\end{array}\right.$£¬Èôz=y-2xµÄ×î´óֵΪ7£¬ÔòʵÊýa=£¨¡¡¡¡£©
A£®-1B£®1C£®$\frac{10}{3}$D£®$\frac{11}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒSn=1-an£¬ÊýÁÐ{bn}Âú×ãbn=log4a1+log4a2+¡­+log4an£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ$\left\{{\frac{1}{a_n}+\frac{1}{b_n}}\right\}$µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬Æ½ÃæPAD¡ÍÆ½ÃæABCD£¬ËıßÐÎABCDΪÕý·½ÐΣ¬¡ÏPAD=90¡ã£¬ÇÒPA=AD=2£¬E£¬F·Ö±ðÊÇÏß¶ÎPA£¬CDµÄÖе㣬ÔòÒìÃæÖ±ÏßEFÓëBDËù³É½ÇµÄÓàÏÒֵΪ$\frac{\sqrt{3}}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²CµÄ·½³ÌΪ£¨x-1£©2+£¨y-1£©2=2£¬ÔÚÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñsin£¨¦È+\frac{¦Ð}{4}£©=2\sqrt{2}$£®
£¨1£©Ð´³öÔ²CµÄ²ÎÊý·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÉèµãPΪԲCÉϵÄÈÎÒ»µã£¬ÇóµãPµ½Ö±Ïßl¾àÀëµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬a2=2a1=2£¬ÇÒ$\frac{{a}_{n+3}}{{a}_{n+2}}$=$\frac{{a}_{n+1}}{{a}_{n}}$¶Ô?n¡ÊN*ºã³ÉÁ¢£¬¼ÇÊýÁÐ{an}µÄǰnÏîºÍΪSn£®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{a2n-1+a2n}ΪµÈ±ÈÊýÁУ»
£¨2£©Èô´æÔÚÕýʵÊýt£¬Ê¹µÃÊýÁÐ{Sn+t}ΪµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÃüÌâp£º?x¡ÊR£¬²»µÈʽx2-mx+$\frac{3}{2}$£¾0ºã³ÉÁ¢£¬ÃüÌâq£ºÍÖÔ²$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{3-m}$=1µÄ½¹µãÔÚxÖáÉÏ£®ÈôÃüÌâp¡ÅqÎªÕæÃüÌ⣬ÇóʵÊýmµÄȡֵ·¶Î§£¨-$\sqrt{6}$£¬3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬a2=3£¬¶ÔÈÎÒân¡ÊN*£¬an+2¡Üan+3•2n£¬an+1¡Ý2an+1ºã³ÉÁ¢£¬ÔòÊýÁÐ{an}µÄǰnÏîºÍSn=2n+1-n-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚ¡÷ABCÖУ¬MΪ±ßBCÉϵÄÈÎÒâÒ»µã£¬µãNÔÚÏß¶ÎAMÉÏ£¬ÇÒÂú×ã$\overrightarrow{AN}=\frac{1}{3}\overrightarrow{NM}$£¬Èô$\overrightarrow{AN}=¦Ë\overrightarrow{AB}+¦Ì\overrightarrow{AC}£¨{¦Ë£¬¦Ì¡ÊR}£©$£¬Ôò¦Ë+¦ÌµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{3}$C£®$\frac{1}{2}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸