精英家教网 > 高中数学 > 题目详情
17.已知命题p:?x∈R,不等式x2-mx+$\frac{3}{2}$>0恒成立,命题q:椭圆$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{3-m}$=1的焦点在x轴上.若命题p∨q为真命题,求实数m的取值范围(-$\sqrt{6}$,3).

分析 先求出命题p,q为真时,m的取值范围,求其并集可得答案.

解答 解:若?x∈R,不等式x2-mx+$\frac{3}{2}$>0恒成立,
则△=m2-6<0,
解得:m∈(-$\sqrt{6}$,$\sqrt{6}$);
即命题p:m∈(-$\sqrt{6}$,$\sqrt{6}$);
若椭圆$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{3-m}$=1的焦点在x轴上.
则m-1>3-m>0,
解得:m∈(2,3),
即命题p:m∈(2,3),
若命题p∨q为真命题,则m∈(-$\sqrt{6}$,3),
故答案为:(-$\sqrt{6}$,3).

点评 本题以命题的真假判断与应用为载体,考查了复合命题,不等式恒成立,椭圆的标准方程等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DA}$=$\overrightarrow{d}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,$\overrightarrow{b}$•$\overrightarrow{c}$=0,|$\overrightarrow{a}$|≠|$\overrightarrow{c}$|,试判定四边形ABCD是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{3x}{2x+3}$,数列{an}满足a1=1,an+1=f(an),n∈N*
(1)求a2,a3,a4的值;
(2)求证:数列$\left\{{\frac{1}{a_n}}\right\}$是等差数列;
(3)设数列{bn}满足bn=an-1•an(n≥2),b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2015}{2}$对一切n∈N*成立,求最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,左,右焦点分别为F1,F2,以原点为圆心,椭圆C的短半轴长为半径的圆与直线$x-y+\sqrt{2}=0$相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若不过原点且斜率存在的直线l交椭圆C于点G,H,且△OGH的面积为1,线段GH的中点为P,在x轴上是否存在关于原点对称的两个定点M,N,使得直线PM,PN的斜率之积为定值?若存在,求出两定点M,N的坐标和定值的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设t是1的立方根,则A={x|x=tn+$\frac{1}{{t}^{n}}$,n∈Z},则A={-1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=ex-|ln(-x)|的两个零点为x1,x2,则(  )
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=l (a>b>0)的焦距为2,离心率为$\frac{\sqrt{2}}{2}$,椭圆的右顶点为A.
(1)求该椭圆的方程:
(2)过点D($\sqrt{2}$,-$\sqrt{2}$)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的
斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为θ(其中0<θ≤π),|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,若(2$\overrightarrow{a}$-$\overrightarrow{b}$)⊥(k$\overrightarrow{a}$+$\overrightarrow{b}$),则实数k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若正数x,y满足$\frac{1}{y}+\frac{3}{x}=1$,则3x+4y的最小值是(  )
A.24B.28C.25D.26

查看答案和解析>>

同步练习册答案