分析 (1)由题意可知2c=2,c=1,离心率e=$\frac{c}{a}$,求得a=2,则b2=a2-c2=1,即可求得椭圆的方程:
(2)则直线PQ的方程:y=k(x-$\sqrt{2}$)-$\sqrt{2}$,代入椭圆方程,由韦达定理及直线的斜率公式,分别求得直线AP,AQ的斜率,即可证明直线AP,AQ的率之和为定值.
解答 解:(1)由题意可知:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=l (a>b>0),焦点在x轴上,2c=1,c=1,
椭圆的离心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,则a=$\sqrt{2}$,b2=a2-c2=1,
则椭圆的标准方程:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)证明:设P(x1,y1),Q(x2,y2),A($\sqrt{2}$,0),
由题意PQ的方程:y=k(x-$\sqrt{2}$)-$\sqrt{2}$,
则$\left\{\begin{array}{l}{y=k(x-\sqrt{2})-\sqrt{2}}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:(2k2+1)x2-(4$\sqrt{2}$k2+4$\sqrt{2}$k)x+4k2+8k+2=0,
由韦达定理可知:x1+x2=$\frac{4\sqrt{2}{k}^{2}+4\sqrt{2}k}{2{k}^{2}+1}$,x1x2=$\frac{4{k}^{2}+8k+2}{2{k}^{2}+1}$,
则y1+y2=k(x1+x2)-2$\sqrt{2}$k-2$\sqrt{2}$=$\frac{-2\sqrt{2}-2\sqrt{2}k}{2{k}^{2}+1}$,
则kAP+kAQ=$\frac{{y}_{1}}{{x}_{1}-\sqrt{2}}$+$\frac{{y}_{2}}{{x}_{2}-\sqrt{2}}$=$\frac{{y}_{1}{x}_{2}+{y}_{2}{x}_{1}-\sqrt{2}({y}_{1}+{y}_{2})}{{x}_{1}{x}_{2}-\sqrt{2}({x}_{1}+{x}_{2})+2}$,
由y1x2+y2x1=[k(x1-$\sqrt{2}$)-$\sqrt{2}$]x2+[k(x2-$\sqrt{2}$)-$\sqrt{2}$]x1=2kx1x2-($\sqrt{2}$k+$\sqrt{2}$)(x1+x2)=-$\frac{4k}{2{k}^{2}+1}$,
kAP+kAQ=$\frac{{y}_{1}{x}_{2}+{y}_{2}{x}_{1}-\sqrt{2}({y}_{1}+{y}_{2})}{{x}_{1}{x}_{2}-\sqrt{2}({x}_{1}+{x}_{2})+2}$=$\frac{-\frac{4k}{2{k}^{2}+1}-\sqrt{2}×\frac{-2\sqrt{2}-2\sqrt{2}k}{2{k}^{2}+1}}{\frac{4{k}^{2}+8k+2}{2{k}^{2}+1}-\sqrt{2}×\frac{4\sqrt{2}{k}^{2}+4\sqrt{2}k}{2{k}^{2}+1}+2}$=1,
∴直线AP,AQ的斜率之和为定值1.
点评 本题考查椭圆的简单几何性质,直线与椭圆位置关系,韦达定理及直线的斜率公式,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2,0,1,7} | B. | {0,6,7,8} | C. | {2,3,4,5} | D. | {3,4,5,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2f(ln2)>3f(ln3) | B. | 2f(ln2)<3f(ln3) | C. | 2f(ln2)≥3f(ln3) | D. | 2f(ln2)≤3f(ln3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com