精英家教网 > 高中数学 > 题目详情
17.某程序框图如图所示,则输出的结果S=(  )
A.26B.57C.120D.247

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.

解答 解:程序在运行过程中各变量的值如下表示:
           k   S   是否继续循环 
循环前 1   1/
第一圈 2   4      是
第二圈 3   11    是
第三圈 4   26    是
第四圈 5   57    否
故最终的输出结果为:57
故选:B.

点评 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在(x-$\frac{1}{x}$)10的二项展开式中,x4的系数等于(  )
A.-120B.-60C.60D.120

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,输出的x的值为17.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DA}$=$\overrightarrow{d}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,$\overrightarrow{b}$•$\overrightarrow{c}$=0,|$\overrightarrow{a}$|≠|$\overrightarrow{c}$|,试判定四边形ABCD是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a=2ln$\frac{3}{2}$、b=log2$\frac{1}{3}$、c=($\frac{1}{2}$)-0.3,则(  )
A.c<a<bB.a<c<bC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=$\left\{\begin{array}{l}{f(x)x>0}\\{-f(x)x<0}\end{array}\right.$,求F(2)+F(-2)的值;
(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]恒成立,试求b取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知t为实数,函数f(x)=2loga(2x-t-2),g(x)=logax,其中0<a<1.
(1)若函数f(x)=g(ax+1)-kx是偶函数,求实数k的值;
(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{3x}{2x+3}$,数列{an}满足a1=1,an+1=f(an),n∈N*
(1)求a2,a3,a4的值;
(2)求证:数列$\left\{{\frac{1}{a_n}}\right\}$是等差数列;
(3)设数列{bn}满足bn=an-1•an(n≥2),b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2015}{2}$对一切n∈N*成立,求最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=l (a>b>0)的焦距为2,离心率为$\frac{\sqrt{2}}{2}$,椭圆的右顶点为A.
(1)求该椭圆的方程:
(2)过点D($\sqrt{2}$,-$\sqrt{2}$)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的
斜率之和为定值.

查看答案和解析>>

同步练习册答案