12£®Èçͼ£¬ÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ºÍÔ²C2£ºx2+y2=b2£¬ÒÑÖªÍÖÔ²C1¹ýµã£¨1£¬$\frac{\sqrt{2}}{2}$£©£¬½¹¾àΪ2£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÍÖÔ²C1µÄ϶¥µãΪE£¬¹ý×ø±êÔ­µãOÇÒÓë×ø±êÖá²»ÖØºÏµÄÈÎÒâÖ±Ïßt£¾1£¬ÓëÔ²C2ÏཻÓÚµãA¡¢B£¬Ö±ÏßEA¡¢EBÓëÍÖÔ²C1µÄÁíÒ»¸ö½»µã·Ö±ðÊǵãP¡¢M£®ÉèPMµÄбÂÊΪk1£¬Ö±ÏßlбÂÊΪk2£¬Çó$\frac{k_2}{k_1}$µÄÖµ£®

·ÖÎö £¨1£©½«µã´úÈëÍÖÔ²·½³Ì£¬½â·½³Ì×飬ÇóµÃa2=2£¬b2=1£¬¿ÉµÃÍÖÔ²C1µÄ·½³Ì£»
£¨2£©Éè³öPEËùÔÚÖ±Ïß·½³Ì£¬ºÍÍÖÔ²·½³ÌÁªÁ¢ÇóµÃP¡¢MµÄ×ø±ê£¬Ôòk1¿ÉÇó£¬ÁªÁ¢Ö±ÏßPEµÄ·½³ÌÓëÔ²µÄ·½³ÌÇóµÃM×ø±ê£¬ÔòÖ±ÏßlбÂÊΪk2Çó£¬×÷±È¿ÉµÃ$\frac{k_2}{k_1}$µÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²C1¹ýµã£¨1£¬$\frac{\sqrt{2}}{2}$£©£¬½¹¾àΪ2£¬
¡à$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{\frac{1}{2}}{{b}^{2}}=1}\\{{a}^{2}-{b}^{2}=1}\end{array}\right.$½â·½³Ì×飬ÇóµÃa2=2£¬b2=1£¬
¡àÍÖÔ²C1µÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£®¡­£¨4·Ö£©
£¨2£©ÓÉÌâÒâÖªÖ±ÏßPE£¬MEµÄбÂÊ´æÔÚÇÒ²»Îª0£¬PE¡ÍEM£¬
²»·ÁÉèÖ±ÏßPEµÄбÂÊΪk£¨k£¾0£©£¬ÔòPE£ºy=kx-1£¬
ÓÉ$\left\{\begin{array}{l}y=kx-1\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$µÃ$\left\{\begin{array}{l}x=\frac{4k}{{2{k^2}+1}}\\ y=\frac{{2{k^2}-1}}{{2{k^2}+1}}\end{array}\right.$»ò$\left\{\begin{array}{l}x=0\\ y=-1\end{array}\right.$£¬¡à$P£¨\frac{4k}{{2{k^2}+1}}£¬\frac{{2{k^2}-1}}{{2{k^2}+1}}£©$£®¡­£¨6·Ö£©
ÓÃ$-\frac{1}{k}$È¥´úk£¬µÃ$M£¨\frac{-4k}{{2+{k^2}}}£¬\frac{{2-{k^2}}}{{2+{k^2}}}£©$£¬¡­£¨8·Ö£©
Ôò${k_1}={k_{PM}}=\frac{{{k^2}-1}}{3k}$¡­£¨10·Ö£©
ÓÉ$\left\{\begin{array}{l}y=kx-1\\{x^2}+{y^2}=1\end{array}\right.$µÃ$\left\{\begin{array}{l}x=\frac{2k}{{{k^2}+1}}\\ y=\frac{{{k^2}-1}}{{{k^2}+1}}\end{array}\right.$»ò$\left\{\begin{array}{l}x=0\\ y=-1\end{array}\right.$¡à$A£¨\frac{2k}{{{k^2}+1}}£¬\frac{{{k^2}-1}}{{{k^2}+1}}£©$£®¡­£¨12·Ö£©
Ôò${k_2}={k_{OA}}=\frac{{{k^2}-1}}{2k}$£¬ËùÒÔ$\frac{k_2}{k_1}=\frac{3}{2}$£®¡­£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏߺÍÔ²×¶ÇúÏßµÄλÖùØÏµ£¬¿¼²éÁË·½³Ì×éµÄ½â·¨£¬ÑµÁ·ÁËÀûÓûù±¾²»µÈʽÇó×îÖµ£¬¿¼²éÁËѧÉúµÄÔËËãÄÜÁ¦£¬Êô¸ß¿¼ÊÔÌâÖеÄѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=£¨x-c£©|x-c|£¬g£¨x£©=alnx£®
£¨1£©ÊÔÅжϺ¯Êýf£¨x£©Óëg£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©¼ÇF£¨x£©=f£¨x£©+g£¨x£©£¬a£¼0£¬c£¾0£®
¢Ùµ±c=$\frac{a}{2}$+1ʱ£¬ÈôF£¨x£©¡Ý$\frac{1}{4}$¶Ôx¡Ê£¨c£¬+¡Þ£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
¢ÚÉ躯ÊýF£¨x£©µÄͼÏóÔÚµãP£¨x1£¬F£¨x1£©£©£¬Q£¨x2£¬F£¨x2£©£©´¦µÄÇÐÏß·Ö±ðΪl1£¬l2£¬Èôx1=$\sqrt{-\frac{a}{2}}$£¬x2=c£¬ÇÒl1¡Íl2£¬ÇóʵÊýcµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¸ø³öÏÂÁк¯Êý¢Ùf1£¨x£©=x2£»¢Úf2£¨x£©=lgx£»¢Ûy=sinxcosx£»¢Üy=2x+2-x£®ÆäÖÐÊÇżº¯ÊýµÄÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÔÚµÈÑüÖ±½ÇÈý½ÇÐÎABCÖУ¬DΪб±ßABÉÏÈÎÒâÒ»µã£¬ÔòADµÄ³¤Ð¡ÓÚACµÄ³¤µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$1-\frac{{\sqrt{2}}}{2}$C£®$\frac{{\sqrt{2}}}{2}$D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=ax3+bx2+cxÊÇRÉÏµÄÆæº¯Êý£¬ÇÒf£¨1£©=3£¬f£¨2£©=12£®
£¨1£©Çóa£¬b£¬cµÄÖµ£»
£¨2£©Éèg£¨x£©=£¨m+1£©lnx+m$\frac{f£¨x£©}{x}$+1-2m£¬ÌÖÂÛg£¨x£©µÄµ¥µ÷ÐÔ
£¨3£©µ±m¡Ü-2ʱ£¬½â²»µÈʽg£¨x£©¡Üm+5-4x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª¦Ø£¾0£¬º¯Êýf£¨x£©=cos£¨$\frac{¦Ð}{4}$-¦Øx£©ÔÚ£¨$\frac{¦Ð}{2}$£¬¦Ð£©Éϵ¥µ÷µÝ¼õ£¬Ôò¦ØµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{1}{2}$£¬$\frac{5}{4}$]B£®[$\frac{1}{2}$£¬$\frac{3}{4}$]C£®£¨0£¬$\frac{1}{2}$]D£®£¨0£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªÊýÁÐ{lg£¨an+1£©}ΪµÈ²îÊýÁУ¬ÇÒa1=9£¬a4=9999£¬ÔòÊýÁÐ{an}µÄǰ3ÏîºÍS3=£¨¡¡¡¡£©
A£®1113B£®1110C£®1107D£®999

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªÈÎÒâÒ»¸öÕýÕûÊýµÄÈý´ÎÃݿɱíʾ³ÉһЩÁ¬ÐøÆæÊýµÄºÍ£¬ÈçͼËùʾ£¬33¿É±íʾΪ7+9+11£¬ÔòÎÒÃǰÑ7¡¢9¡¢11½Ð×öËüµÄ¡°ÊýÒò×Ó¡±£¬Èôn3µÄÒ»¸ö¡°ÊýÒò×Ó¡±Îª2015£¬Ôòn=45£®
13=1
23=2+5
33=7+9+11
43=13+15+17+19
¡­

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÕýÕûÊýa£¬bÂú×ã4a+b=30£¬Ê¹µÃ$\frac{1}{a}$+$\frac{1}{b}$È¡×îСֵʱ£¬ÔòʵÊý¶Ô£¨a£¬b£©ÊÇ£¨¡¡¡¡£©
A£®£¨5£¬10£©B£®£¨6£¬6£©C£®£¨10£¬5£©D£®£¨7£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸