·ÖÎö £¨1£©½«µã´úÈëÍÖÔ²·½³Ì£¬½â·½³Ì×飬ÇóµÃa2=2£¬b2=1£¬¿ÉµÃÍÖÔ²C1µÄ·½³Ì£»
£¨2£©Éè³öPEËùÔÚÖ±Ïß·½³Ì£¬ºÍÍÖÔ²·½³ÌÁªÁ¢ÇóµÃP¡¢MµÄ×ø±ê£¬Ôòk1¿ÉÇó£¬ÁªÁ¢Ö±ÏßPEµÄ·½³ÌÓëÔ²µÄ·½³ÌÇóµÃM×ø±ê£¬ÔòÖ±ÏßlбÂÊΪk2Çó£¬×÷±È¿ÉµÃ$\frac{k_2}{k_1}$µÄÖµ£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²C1¹ýµã£¨1£¬$\frac{\sqrt{2}}{2}$£©£¬½¹¾àΪ2£¬
¡à$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{\frac{1}{2}}{{b}^{2}}=1}\\{{a}^{2}-{b}^{2}=1}\end{array}\right.$½â·½³Ì×飬ÇóµÃa2=2£¬b2=1£¬
¡àÍÖÔ²C1µÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£®¡£¨4·Ö£©
£¨2£©ÓÉÌâÒâÖªÖ±ÏßPE£¬MEµÄбÂÊ´æÔÚÇÒ²»Îª0£¬PE¡ÍEM£¬
²»·ÁÉèÖ±ÏßPEµÄбÂÊΪk£¨k£¾0£©£¬ÔòPE£ºy=kx-1£¬
ÓÉ$\left\{\begin{array}{l}y=kx-1\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$µÃ$\left\{\begin{array}{l}x=\frac{4k}{{2{k^2}+1}}\\ y=\frac{{2{k^2}-1}}{{2{k^2}+1}}\end{array}\right.$»ò$\left\{\begin{array}{l}x=0\\ y=-1\end{array}\right.$£¬¡à$P£¨\frac{4k}{{2{k^2}+1}}£¬\frac{{2{k^2}-1}}{{2{k^2}+1}}£©$£®¡£¨6·Ö£©
ÓÃ$-\frac{1}{k}$È¥´úk£¬µÃ$M£¨\frac{-4k}{{2+{k^2}}}£¬\frac{{2-{k^2}}}{{2+{k^2}}}£©$£¬¡£¨8·Ö£©
Ôò${k_1}={k_{PM}}=\frac{{{k^2}-1}}{3k}$¡£¨10·Ö£©
ÓÉ$\left\{\begin{array}{l}y=kx-1\\{x^2}+{y^2}=1\end{array}\right.$µÃ$\left\{\begin{array}{l}x=\frac{2k}{{{k^2}+1}}\\ y=\frac{{{k^2}-1}}{{{k^2}+1}}\end{array}\right.$»ò$\left\{\begin{array}{l}x=0\\ y=-1\end{array}\right.$¡à$A£¨\frac{2k}{{{k^2}+1}}£¬\frac{{{k^2}-1}}{{{k^2}+1}}£©$£®¡£¨12·Ö£©
Ôò${k_2}={k_{OA}}=\frac{{{k^2}-1}}{2k}$£¬ËùÒÔ$\frac{k_2}{k_1}=\frac{3}{2}$£®¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏߺÍÔ²×¶ÇúÏßµÄλÖùØÏµ£¬¿¼²éÁË·½³Ì×éµÄ½â·¨£¬ÑµÁ·ÁËÀûÓûù±¾²»µÈʽÇó×îÖµ£¬¿¼²éÁËѧÉúµÄÔËËãÄÜÁ¦£¬Êô¸ß¿¼ÊÔÌâÖеÄѹÖáÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | $1-\frac{{\sqrt{2}}}{2}$ | C£® | $\frac{{\sqrt{2}}}{2}$ | D£® | $\sqrt{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [$\frac{1}{2}$£¬$\frac{5}{4}$] | B£® | [$\frac{1}{2}$£¬$\frac{3}{4}$] | C£® | £¨0£¬$\frac{1}{2}$] | D£® | £¨0£¬2] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1113 | B£® | 1110 | C£® | 1107 | D£® | 999 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨5£¬10£© | B£® | £¨6£¬6£© | C£® | £¨10£¬5£© | D£® | £¨7£¬2£© |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com