精英家教网 > 高中数学 > 题目详情
等差数列{an}的首项为23,公差为整数,且第6项为正数,从第7项起为负数.
(1)求此数列的公差d;
(2)当前n项和Sn是正数时,求n的最大值.
考点:等差数列的前n项和,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)由a6>0,a7<0且公差d∈Z,可求出d的值;
(2)由前n项和Sn>0,以及n∈N*,求出n的最大值.
解答: 解:(1)由题意,得a6=a1+5d=23+5d>0,
a7=a1+6d=23+6d<0,
∴-
23
5
<d<-
23
6

又d∈Z,
∴d=-4;
(2)前n项和Sn=23n+
n(n-1)
2
•(-4)>0,
整理,得n(50-4n)>0;
∴0<n<
25
2

又∵n∈N*
∴n的最大值为12.
点评:本题考查了等差数列的有关运算问题,解题时应根据等差数列的性质与通项公式、前n项和,进行计算,即可得出正确的答案,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设偶函数f(x)的定义域为(-π,0)∪(0,π),当x∈(0,π)时,f(x)=-f′(
π
2
)sin x-πln x,若a=f(logπ3),b=f(-log39),c=f(log23),则a、b、c的大小关系为(  )
A、a>b>c
B、b>c>a
C、c>a>b
D、a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和是Sn,且Sn+
1
3
an=1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log4(1-Sn+1)(n∈N*),Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求使Tn
1007
2016
成立的最小的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-x+1-a,a∈R.
(1)当a=-1时,解关于x的不等式f(x)>0;
(2)当a≤
1
2
时,解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
1
tan2x
+5-
2
tanx
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域:
(1)y=
2x-1
x2+2x+2
; 
(2)y=
x-2
x2-3x+2

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A是由适合以下性质的函数f(x)构成的:对于任意的m,n∈[-1,1],且m≠n,都有|f(m)-f(n)|≤3|m-n|.
(1)判断函数f1(x)=x2是否在集合A中?并说明理由;
(2)设函数f(x)=ax2+bx,若对于任意的m,n∈[-1,1],有|a(m+n)+b|≤3恒成立,试求2a+b的取值范围,并推理判断f(x)是否在集合A中?
(3)在(2)的条件下,若f(-2)=6,且对于满足(2)的每个实数a,存在最大的实数t,使得当x∈[-2,t]时,|f(x)|≤6恒成立,试求用a表示t的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
sin8°+sin7°sin75°
cos8°-sin7°cos75°

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinx在区间[-
π
6
6
]上的值域为
 

查看答案和解析>>

同步练习册答案