精英家教网 > 高中数学 > 题目详情
13.如图所示,在△ABC中,FC=2BF,AC=4AE,BC=3,AC=4,∠ACB=60°,则$\overrightarrow{BE}$•$\overrightarrow{FE}$=$\frac{15}{2}$.

分析 由已知结合向量加法的三角形法则把$\overrightarrow{BE}、\overrightarrow{FE}$用$\overrightarrow{CB}、\overrightarrow{CA}$表示,然后展开向量的数量积求得$\overrightarrow{BE}$•$\overrightarrow{FE}$.

解答 解:∵FC=2BF,AC=4AE,
∴$\overrightarrow{BE}=\overrightarrow{BC}+\overrightarrow{CE}=-\overrightarrow{CB}+\frac{3}{4}\overrightarrow{CA}$,
$\overrightarrow{FE}=\overrightarrow{FC}+\overrightarrow{CE}=\frac{2}{3}\overrightarrow{BC}+\frac{3}{4}\overrightarrow{CA}$,
又BC=3,AC=4,∠ACB=60°,
∴$\overrightarrow{BE}$•$\overrightarrow{FE}$=$(-\overrightarrow{CB}+\frac{3}{4}\overrightarrow{CA})•(\frac{2}{3}\overrightarrow{BC}+\frac{3}{4}\overrightarrow{CA})$
=$\frac{2}{3}{\overrightarrow{CB}}^{2}-\frac{3}{4}\overrightarrow{CA}•\overrightarrow{CB}-\frac{1}{2}\overrightarrow{CA}•\overrightarrow{CB}+\frac{9}{16}{\overrightarrow{CA}}^{2}$
=$\frac{2}{3}|\overrightarrow{CB}{|}^{2}-\frac{5}{4}|\overrightarrow{CB}||\overrightarrow{CA}|cos60°+\frac{9}{16}|\overrightarrow{CA}{|}^{2}$
=$\frac{2}{3}×9-\frac{5}{4}×3×4×\frac{1}{2}+\frac{9}{16}×16$=$\frac{15}{2}$.
故答案为:$\frac{15}{2}$.

点评 本题考查平面向量的数量积运算,考查了向量加法的三角形法则,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知双曲线C的渐近线方程为y=±x,一个焦点为(2$\sqrt{2}$,0).
(1)求双曲线C的方程;
(2)过双曲线C上的任意一点P,分别作这两条渐近线的平行线与这两条渐近线得到四边形ODPG,证明四边形ODPG的面积是一个定值;
(3)(普通中学做)命题甲:设直线x=0与y=h(h>0)在第一象限内与渐近线y=x所围成的三角形OMN绕着y轴旋转一周所得几何体的体积.

(重点中学做)命题乙:设直线y=0与y=h(h>0)在第一象限内与双曲线及渐近线所围成的如图所示的图形OABN,求它绕y轴旋转一圈所得几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:?x∈R,x2<0;命题q:?x>2,log${\;}_{\frac{1}{2}}$x<0,则下列命题中为真命题的是(  )
A.p∧qB.p∧¬qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=1,则|$\overline{a}$+2$\overrightarrow{b}$|=$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a=0.6${\;}^{\frac{1}{2}}$,b=0.5${\;}^{\frac{1}{4}}$,c=lg0.4,则(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知P(x,y)是函数y=ax+2-1(a>0且a≠1)上任意一点,Q(y+1,x+2)在函数y=f(x)图象上,g(x)=f(x)[f(x)+2f(2)-1].求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角系xOy中,已知中心在原点,对称轴为坐标轴,离心率e=$\frac{5}{4}$的双曲线C的一个焦点与抛物线y2=20x的焦点F重合,则双曲线C的方程为$\frac{x^2}{16}-\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,2),|$\overrightarrow{b}$|=5,$\overrightarrow{a}•\overrightarrow{b}$=5,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,则cosθ=(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{15}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线y2=2px的焦点坐标为(2,0),且过焦点的直线y=x-2与抛物线交于A、B两点,则△AOB的面积为8$\sqrt{2}$.

查看答案和解析>>

同步练习册答案