精英家教网 > 高中数学 > 题目详情
已知圆C的圆心在直线y=-4x上,且与直线x+y-1=0相切于点P(3,-2).
(Ⅰ)求圆C方程;
(Ⅱ)点M(0,1)与点N关于直线x-y=0对称.是否存在过点N的直线l,l与圆C相交于E,F两点,且使三角形SOEF=2
2
(O为坐标原点),若存在求出直线l的方程,若不存在用计算过程说明理由.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)过切点P(3,2)且与x+y-1=0垂直的直线,与直线y=-4x联立求出圆心,由此能求出圆的方程.(Ⅱ)设N(a,b),由点M(0,1)与点N关于直线x-y=0对称,求出N(1,0),再分斜率不存在和斜率存在两种情况进行分类讨论,能求出直线方程.
解答: 解:(Ⅰ)过切点P(3,2)且与x+y-1=0垂直的直线为y+2=x-3,即y=x-5.(1分)
与直线y=-4x联立
y=x-5
y=-4x
,解得x=1,y=-4,
∴圆心为(1,-4),…(2分)
∴半径r=
(3-1)2+(-2+4)2
=2
2

∴所求圆的方程为(x-1)2+(y+4)2=8.…(4分)
(Ⅱ)设N(a,b),∵点M(0,1)与点N关于直线x-y=0对称,
b+1
2
=
a
2
b-1
a
=-1
,解得a=1,b=0,∴N(1,0).…(5分)
①当斜率不存在时,此时直线l方程为x=1,
原点到直线的距离为d=1,
同时令x=1代入圆方程得
y=-4±2
2
,∴|EF|=4
2

∴SOEF=
1
2
×1×4
2
=2
2
满足题意,
此时方程为x=1.…(8分)
②当斜率存在时,设直线l的方程为y=k(x-1),
圆心C(1,-4)到直线l的距离d=
|k+4-k|
k2+1
=
4
k2+1
,…(9分)
设EF的中点为D,连接CD,则必有CD⊥EF,
在Rt△CDE中,DE=
8-d2
=
8-
16
k2+1
=
2
2
k2-1
k2+1

∴EF=
4
2
k2-1
k2+1
,原点到直线l的距离d1=
|k|
k2+1
,…(10分)
∴S△OEF=
1
2
4
2
k2-1
k2+1
|k|
k2+1
=2
2
,…(12分)
整理,得3k2+1=0,不存在这样的实数k.
综上所述,所求的直线方程为x=1.…(14分)
点评:本题考查圆的方程的求法,考查直线方程存在性的讨论及其求法,具有一定的探索性,对数学思维的要求较高,解题时要注意分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、若p∧q为假,则p、q均为假.
B、若p:?x∈R,x2+x+1>0,则¬p:?x∈R,x2+x+1≤0.
C、若a+b=1,则
1
a
+
1
b
的最小值为4.
D、线性相关系数|r|越接近1,表示两变量相关性越强.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙丙丁4人玩传球游戏,持球者将球等可能的传给其他3人,若球首先从甲传出,经过3次传球.
(1)求球恰好回到甲手中的概率;
(2)设乙获球(获得其他游戏者传的球)的次数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn满足
Sn
n
=3n-2

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
a
x
-lnx,a>0.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)>x-x2在(1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,右焦点为(
3
,0)

(Ⅰ)求椭圆方程;
(Ⅱ)过椭圆右焦点且斜率为k的直线与椭圆交于点A(x1,y1),B(x2,y2),若
x1x2
a2
+
y1y2
b2
=0
,求斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l与x轴正半轴和y轴分别交于点Q、P,与椭圆分别交于点M、N,各点均不重合且满足
PM
=λ1
MQ
PN
=λ2
NQ

(1)求椭圆的标准方程;
(2)若λ12=-3,试证明:直线l过定点并求此定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知g(x)=-x2-4,f(x)为二次函数,满足f(x)+g(x)+f(-x)+g(-x)=0,且f(x)在[-1,2]上的最大值为7,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
2x-y≥0
y≥x
y≥-x+b
且z=2x+y的最小值为4,则实数b的值为
 

查看答案和解析>>

同步练习册答案