精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,右焦点为(
3
,0)

(Ⅰ)求椭圆方程;
(Ⅱ)过椭圆右焦点且斜率为k的直线与椭圆交于点A(x1,y1),B(x2,y2),若
x1x2
a2
+
y1y2
b2
=0
,求斜率k的值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由题设条件推导出
c
a
=
3
2
c=
3
,由此能求出椭圆方程.
(Ⅱ)设过椭圆右焦点且斜率为k的直线方程:x=my+
3
,m=
1
k
,由
x=my+
3
x2
4
+y2=1
,得(m2+4)y2+2
3
my-1=0,由此利用韦达定理根据已知条件能求出斜率k的值.
解答: 解:(Ⅰ)∵椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,右焦点为(
3
,0)

c
a
=
3
2
c=
3
,解得a=2,b2=4-3=1,
∴椭圆方程为
x2
4
+y2=1

(Ⅱ)∵
x2
4
+y2=1
的右焦点F(
3
,0),
∴过椭圆右焦点且斜率为k的直线方程:x=my+
3
,m=
1
k

x=my+
3
x2
4
+y2=1
,整理,得(m2+4)y2+2
3
my-1=0,
∴y1+y2=
-2
3
m
m2+1
,y1y2=
-1
m2+4

△=12m2+4(m2+4)>0,
x1x2
a2
+
y1y2
b2
=
m2+4
4
y1y2+
3
m
4
(y1+y2)+
3
4
=
4-2m2
2(m2+4)
=0,
∴m=±
2
,∴k=
1
m
=±
2
2
点评:本题考查椭圆方程的求法,考查直线的斜率k的求法,是中档题,解题时要认真审题,注意直线与椭圆的位置关系的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中的假命题是(  )
A、?x∈R,2x>0
B、“|a|>0”是“a>0”的必要不充分条件
C、“x<2”是“|x|<2”的充分不必要条件
D、“?x0∈R,使得x2-x>0”的否定是“?x∈R,都有x2-x≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)与双曲线
x2
m2
-
y2
3-m2
=1(0<m2<3)
有公共的焦点,过椭圆E的右顶点作任意直线l,设直线l交抛物线y2=2x于M、N两点,且OM⊥ON.
(1)求椭圆E的方程;
(2)设P是椭圆E上第一象限内的点,点P关于原点O的对称点为A、关于x轴的对称点为Q,线段PQ与x轴相交于点C,点D为CQ的中点,若直线AD与椭圆E的另一个交点为B,试判断直线PA,PB是否相互垂直?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足不等式
y≥0
x-y≥0
2x-y-2≥0
,试求:
(1)w1=x2+y2的最小值;     
(2)w2=
y-1
x+1
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在直线y=-4x上,且与直线x+y-1=0相切于点P(3,-2).
(Ⅰ)求圆C方程;
(Ⅱ)点M(0,1)与点N关于直线x-y=0对称.是否存在过点N的直线l,l与圆C相交于E,F两点,且使三角形SOEF=2
2
(O为坐标原点),若存在求出直线l的方程,若不存在用计算过程说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

“开门大吉”是某电视台推出的游戏益智节目.选手面对1-4号4扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参加比赛的选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否人数如图所示. 
(Ⅰ)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否与年龄有关?说明你的理由.(下面的临界值表供参考)
P(K2≥k) 0.10 0.05 0.025 0.010 0.005 0.001
k 2.706 3.841 5.024 6.635 7.879 10.828
(Ⅱ)现计划在这次场外调查中按年龄段选取6名选手,并抽取3名幸运奖项,求至少有一人年龄在20~30岁之间的概率.(参考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点M(0,
3
),F为左焦点,且∠OFM=60°,O是坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)P是椭圆上位于x轴上方的一点,且满足PF⊥x轴.设A,B是椭圆C上的两个动点,且
PA
+
PB
PO
(0<λ<4,且λ≠2).求证:直线AB的斜率等于椭圆C的离心率;
(Ⅲ)在(Ⅱ)的条件下,求△OAB面积的最大值,并求此时λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax的图象在x=1处的切线与直线2x+y-1=0平行,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方体中,M、N分别是棱AB、CC1的中点,△M
B
 
1
P
的顶点P在棱CC1上运动,有以下四个命题:
①△MB1P在底面ABCD上的射影图形的面积为定值
②△MB1P在侧面D1C1CD上的射影图形一定是三角形
③直线ND1一定垂直平面MB1P
④平面MB1P一定垂直平面ND1A1
其中正确命题的序号是
 

查看答案和解析>>

同步练习册答案