精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点M(0,
3
),F为左焦点,且∠OFM=60°,O是坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)P是椭圆上位于x轴上方的一点,且满足PF⊥x轴.设A,B是椭圆C上的两个动点,且
PA
+
PB
PO
(0<λ<4,且λ≠2).求证:直线AB的斜率等于椭圆C的离心率;
(Ⅲ)在(Ⅱ)的条件下,求△OAB面积的最大值,并求此时λ的值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)根据椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点M(0,
3
),F为左焦点,且∠OFM=60°,求出几何量,即可求得椭圆E的方程;
(Ⅱ)利用
PA
+
PB
PO
(0<λ<4,且λ≠2),确定坐标之间的关系,点的坐标代入方程,利用点差法,即可证得结论;
(Ⅲ)设直线AB的方程与3x2+4y2=12联立消去y并整理,求出|AB|、点O到直线AB的距离,从而可得△OAB的面积,利用基本不等式求最大值,即可得到结论.
解答: (Ⅰ)解:∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点M(0,
3
),
∴b=
3

∵∠OFM=60°,
∴tan60°=
b
c
=
3

∴c=1,
∴a2=4,
∴椭圆E的方程为:
x2
4
+
y2
3
=1

(Ⅱ)证明:∵P是椭圆上位于x轴上方的一点,且满足PF⊥x轴,
∴P(-1,
3
2

设A(x1,y1)、B(x2,y2),
PA
+
PB
PO
得(x1+1,y1-
3
2
)+(x2+1,y2-
3
2
)=λ(1,-
3
2
),
所以x1+x2=λ-2,y1+y2=
3
2
(2-λ)…①…(5分)
又3x12+4y12=12,3x22+4y22=12,
两式相减得3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0….②
以①式代入可得AB的斜率k=
y1-y2
x1-x2
=
1
2
=
c
a
=e;
(Ⅲ)解:设直线AB的方程为y=
1
2
x+t,与3x2+4y2=12联立消去y并整理得 x2+tx+t2-3=0,
△=3(4-t2)>0,则2<t<2,x1+x2=-t,x1x2=t2-3
|AB|=
1+k2
|x1-x2|=
1+
1
4
3(4-t2)
=
15
2
4-t2

点O到直线AB的距离为d=
2|t|
5

△OAB的面积为S=
1
2
|AB|×d=
3
2
4-t2
|t|=
3
2
(4-t2)t2
3
2
4-t2+t2
2
=
3

当且仅当±
2
时,取得最大值
3

∴S的最大值为
9
2

此时x1+x2=-t=±
2
=λ-2,
∴λ=2±
2
点评:本题考查椭圆的标准方程,考查向量知识的运用,考查点差法,考查直线与椭圆的位置关系,考查基本不等式的运用,确定三角形的面积是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题为真命题的是(  )
①如果命题“?p”与命题“p∨q”都是真命题,那么命题q一定是真命题;
②“若x2+y2=0,则x,y全为0”的否命题;
③“若x∈A∩B,则x∈A∪B”的逆命题;
④若?p是q的必要条件,则p是?q的充分条件;
⑤到两定点F1(-2,0),F2(2,0)距离之和为定值2的动点轨迹是椭圆.
A、①②⑤B、①③④
C、②③D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn满足
Sn
n
=3n-2

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,右焦点为(
3
,0)

(Ⅰ)求椭圆方程;
(Ⅱ)过椭圆右焦点且斜率为k的直线与椭圆交于点A(x1,y1),B(x2,y2),若
x1x2
a2
+
y1y2
b2
=0
,求斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l与x轴正半轴和y轴分别交于点Q、P,与椭圆分别交于点M、N,各点均不重合且满足
PM
=λ1
MQ
PN
=λ2
NQ

(1)求椭圆的标准方程;
(2)若λ12=-3,试证明:直线l过定点并求此定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,直角梯形ABCD中,∠ABC=90°,AB=BC=2AD=4,点E、F分别是AB、CD的中点,点G在EF上,沿EF将梯形AEFD翻折,使平面AEFD⊥平面EBCF,如图2.

(Ⅰ)当AG+GC最小时,求证:BD⊥CG;
(Ⅱ)当2VB-ADGE=VD-GBCF时,求二面角D-BG-C平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知g(x)=-x2-4,f(x)为二次函数,满足f(x)+g(x)+f(-x)+g(-x)=0,且f(x)在[-1,2]上的最大值为7,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x≥1
x+y≤3
x-y≤2
,点A(2,1),B(x,y),O为坐标原点,则
OA
OB
最大值时为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=ax3,(a≠0)有以下说法:
①x=0是f(x)的极值点.
②当a<0时,f(x)在(-∞,+∞)上是减函数.
③若a>0且x≠0则f(x)+f(
1
x
)
有最小值是2a.
④f(x)的图象与(1,f(1))处的切线必相交于另一点.
其中说法正确的序号是
 

查看答案和解析>>

同步练习册答案