精英家教网 > 高中数学 > 题目详情
椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)与双曲线
x2
m2
-
y2
3-m2
=1(0<m2<3)
有公共的焦点,过椭圆E的右顶点作任意直线l,设直线l交抛物线y2=2x于M、N两点,且OM⊥ON.
(1)求椭圆E的方程;
(2)设P是椭圆E上第一象限内的点,点P关于原点O的对称点为A、关于x轴的对称点为Q,线段PQ与x轴相交于点C,点D为CQ的中点,若直线AD与椭圆E的另一个交点为B,试判断直线PA,PB是否相互垂直?并证明你的结论.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)设直线l:ty=x-a,代入y2=2x,并整理,利用韦达定理,结合OM⊥ON,即可求椭圆E的方程;
(2)PA⊥PB,设P(x0,y0),将直线AD的方程y=
y0
4x0
(x+x0)-y0
代入椭圆的方程,并整理,求出B的坐标,证明kPA•kPB=-1,即可得到结论.
解答: 解:(1)设点M(x1,y1),N(x2
y
 
2
)

设直线l:ty=x-a,代入y2=2x,并整理得y2-2ty-2a=0,
所以
y1+y2=2t
y1y2=-2a
 …(2分)
故有
OM
ON
=x1x2+y1y2=(ty1+a)(ty2+a)+y1y2
=(t2+1)y1y2+at(y1+y2)+a2
=(t2+1)(-2a)+at2+a2=a2-2a,解得a=2…(5分)
又椭圆与双曲线有公共的焦点,故有c=
3

所以椭圆的方程为
x2
4
+y2=1
.…(7分)
(2)PA⊥PB.
证明:设P(x0,y0),则A(-x0,-y0),D(x0,-
1
2
y0)
x02+4
y
2
0
=4

将直线AD的方程y=
y0
4x0
(x+x0)-y0
代入椭圆的方程,
并整理得(4x02+y02)x2-6x0
y
2
0
+9
x
2
0
y
2
0
-16
x
2
0
=0
…(9分)
由题意,可知此方程必有一根-x0
xB=
6x0
y
2
0
4
x
2
0
+
y
2
0
+x0
yB=
y0
4x0
(
6x0
y
2
0
4
x
2
0
+
y
2
0
+2x0)-y0
=
y
3
0
-2
x
2
0
y0
4
x
2
0
+
y
2
0

所以kPB=
y
3
0
-2
x
2
0
y0
4
x
2
0
+
y
2
0
-y0
6x0
y
2
0
4
x
2
0
+
y
2
0
=
-6
x
2
0
y0
6x0
y
2
0
=-
x0
y0
…(12分)
故有kPA•kPB=-1,即PA⊥PB…(13分)
点评:本题考查直线与抛物线的位置关系,考查椭圆的方程,考查直线与椭圆的位置关系,考查韦达定理的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P是△ABC所在平面α外一点,O是点P在平面α内的射影
(1)若P到△ABC的三个顶点的距离相等,则O是△ABC外心;
(2)若PA、PB、PC与平面α所成的角相等,则O是△ABC的内心;
(3)若P到△ABC三边距离相等,且O在△ABC的内部,则O是△ABC的内心;
(4)若平面PAB、PBC、PCA与平面α所成的角相等,且O在△ABC的内部,则O是△ABC的外心;
(5)若PA、PB、PC两两垂直,则O是△ABC的垂心.
其中正确命题的序号是
 
(把你认为正确命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题为真命题的是(  )
①如果命题“?p”与命题“p∨q”都是真命题,那么命题q一定是真命题;
②“若x2+y2=0,则x,y全为0”的否命题;
③“若x∈A∩B,则x∈A∪B”的逆命题;
④若?p是q的必要条件,则p是?q的充分条件;
⑤到两定点F1(-2,0),F2(2,0)距离之和为定值2的动点轨迹是椭圆.
A、①②⑤B、①③④
C、②③D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所不的程序框图,则输出的x的值是(  )
A、3B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙丙丁4人玩传球游戏,持球者将球等可能的传给其他3人,若球首先从甲传出,经过3次传球.
(1)求球恰好回到甲手中的概率;
(2)设乙获球(获得其他游戏者传的球)的次数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某年级1000名学生的百米跑成绩全部介于13秒与18秒之间,为了了解学生的百米跑成绩情况,随机抽取了若干学生的百米跑成绩,并按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为1:4:10,且第二组的频数为8.
(Ⅰ)请估计该年级学生中百米跑成绩在[16,17)内的人数;
(Ⅱ)求调查中随机抽取了多少个学生的百米成绩;
(Ⅲ)若从第一和第五组所有成绩中随机取出2个,求这2个成绩差的绝对值大于1秒的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn满足
Sn
n
=3n-2

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,右焦点为(
3
,0)

(Ⅰ)求椭圆方程;
(Ⅱ)过椭圆右焦点且斜率为k的直线与椭圆交于点A(x1,y1),B(x2,y2),若
x1x2
a2
+
y1y2
b2
=0
,求斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x≥1
x+y≤3
x-y≤2
,点A(2,1),B(x,y),O为坐标原点,则
OA
OB
最大值时为
 

查看答案和解析>>

同步练习册答案