精英家教网 > 高中数学 > 题目详情
下列说法正确的是(  )
A、若p∧q为假,则p、q均为假.
B、若p:?x∈R,x2+x+1>0,则¬p:?x∈R,x2+x+1≤0.
C、若a+b=1,则
1
a
+
1
b
的最小值为4.
D、线性相关系数|r|越接近1,表示两变量相关性越强.
考点:命题的真假判断与应用
专题:简易逻辑
分析:利用复合命题的真假判断A,利用特称命题与全称命题的否定关系判断B,利用特殊值判断C,利用线性相关关系判断D即可.
解答: 解:对于A,根据p∧q是假命题,则可知p,q至少有一个为假命题,∴A不正确;
对于B,若p:?x∈R,x2+x+1>0,则¬p:?x∈R,x2+x+1≤0.∴B不正确;
对于C,当a<0,b>0,a+b=1,不妨a=-1,b=2∴
1
a
+
1
b
=-1+
1
2
=-
1
2
<0
,∴C不正确,
对于D,线性相关系数r的绝对值越接近1,表示两变量的相关性越强,∴D正确.
故选:D.
点评:本题考查简易逻辑,命题的否定基本不等式的应用以及线性相关关系,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B是抛物线W:y=x2上的两个点,点A的坐标为(1,1),直线AB的斜率为k,O为坐标原点.
(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求|OD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:①函数f(x)=sinx+
2
sinx
(x∈(0,π))
的最小值是2
2

②在△ABC中,若sin2A=sin2B,则△ABC是等腰或直角三角形;
③如果正实数a,b,c满足a+b>c,则
a
1+a
+
b
1+b
c
1+c

④如果y=f(x)是可导函数,则f′(x0)=0是函数y=f(x)在x=x0处取到极值的必要不充分条件.
其中正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边上一点的坐标为(3,4),则cos2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题:
①函数f(x)在=
1
lgx
(0,+∞)上是减函数
②函数f(x)的图象连续不断,且定义域为R,若x=x0为极值点,则f′(x0)=0
③函数f(x)=2sinxcosx的最小正周期为π
④已知
a
=(1,
3
),
b
=(0,-1),则
a
b
的夹角为
5
6
π

其中,正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中的假命题是(  )
A、?x∈R,2x>0
B、“|a|>0”是“a>0”的必要不充分条件
C、“x<2”是“|x|<2”的充分不必要条件
D、“?x0∈R,使得x2-x>0”的否定是“?x∈R,都有x2-x≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是函数y=-
4-(x-1)2
图象上的任意一点,点Q(2a,a-3)(a∈R),则|PQ|的最小值为(  )
A、
8
5
5
-2
B、
5
C、
5
-2
D、
7
5
5
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.在这个定义下,给出下列命题:
①到原点的“折线距离”等于1的点的集合是一个正方形;
②到原点的“折线距离”等于1的点的集合是一个圆;
③到M(-1,0),N(1,0)两点的“折线距离”相等的点的轨迹方程是x=0;
④到M(-1,0),N(1,0)两点的“折线距离”差的绝对值为1的点的集合是两条平行线.
其中正确的命题有(  )
A、1个
B、2 个
C、3 个
D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在直线y=-4x上,且与直线x+y-1=0相切于点P(3,-2).
(Ⅰ)求圆C方程;
(Ⅱ)点M(0,1)与点N关于直线x-y=0对称.是否存在过点N的直线l,l与圆C相交于E,F两点,且使三角形SOEF=2
2
(O为坐标原点),若存在求出直线l的方程,若不存在用计算过程说明理由.

查看答案和解析>>

同步练习册答案