精英家教网 > 高中数学 > 题目详情
7.已知cosx=$-\frac{{\sqrt{5}}}{3}$,则cos2x等于(  )
A.$-\frac{2}{3}$B.$\frac{1}{9}$C.$\frac{2}{3}$D.$-\frac{1}{9}$

分析 利用倍角公式即可得出.

解答 解:∵cosx=$-\frac{{\sqrt{5}}}{3}$,
则cos2x=$2×(-\frac{\sqrt{5}}{3})^{2}$-1=$\frac{1}{9}$.
故选:B.

点评 本题考查了倍角公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图是某组合体的三视图,则内部几何体的体积的最大值为(  )
A.$\frac{5}{2}(\sqrt{2}-1)π$B.$\frac{25}{4}(3-2\sqrt{2})π$C.$25(3-2\sqrt{2})π$D.$\frac{125}{6}(5\sqrt{2}-7)π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=x3-12x+1在区间[-3,3]上的最大值与最小值分别为M,m,则M-m=32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=(cosα,sinα)$,设$\overrightarrow m=\overrightarrow a+t\overrightarrow b$(t为实数).
(1)若α=$\frac{π}{4}$,求当$|{\overrightarrow m}|$取最小值时实数t的值; 
(2)若$\overrightarrow a⊥\overrightarrow b$,问:是否存在实数t,使得向量$\overrightarrow a-\overrightarrow b$和向量$\overrightarrow m$夹角的余弦值为$\frac{2}{3}$,若存在,请求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.f(x)=ax3-2x2-3,若f′(1)=2,则a等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若$x=\frac{π}{4}$是方程2sin(x+α)=1(α∈(0,2π))的解,则α=$\frac{7π}{12}$或$\frac{23π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个盒子里装有相同大小的红球、白球共30个,其中白球4个.从中任取两个,则概率为$\frac{{C_{26}^1C_4^1+C_4^2}}{{C_{30}^2}}$的事件是(  )
A.没有白球B.至少有一个红球C.至少有一个白球D.至多有一个白球

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}满足a1=3,an+1=an2-2nan+2(n=1,2,3,…).
(1)求a2,a3,a4的值,并猜想数列{an}的通项公式(不需证明);
(2)记Sn为数列{an}的前n项和,试求使得Sn<2n成立的最小正整数n,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}5-x,x≤2\\ 2+{log_a}x,x>2\end{array}\right.({a>0,a≠1})$的值域为[3,+∞),则实数的取值范围是(  )
A.(1,2]B.(1,2)C.$({\frac{1}{2},1})$D.(2,+∞)

查看答案和解析>>

同步练习册答案