精英家教网 > 高中数学 > 题目详情

已知等差数列满足:的前项和为
(Ⅰ)求
(Ⅱ)令,求数列的前项和

(Ⅰ),;(Ⅱ).

解析试题分析:(Ⅰ)因为数列为等差数列,可由等差数列的通项公式,可将已知条件,转化为关于首项,公差的二元一次方程,求出的值,从而求出通项及前;(Ⅱ)由(Ⅰ)得,所以可得数列的通项,观察其通项特点,可采用裂项相消法来求其前项和(裂项相消法在求前项和中常用的一种方法,其特点是通项公式可裂开成两项之差,相加后可以消掉中间项).
试题解析:(Ⅰ)设等差数列的首项为,公差为
由于
所以,解得.
由于,
所以.
(Ⅱ)因为,所以.
因此=.
所以数列的前项和.
考点:1.等差数列;2.数列前项和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设各项均为正数的数列的前项和为,满足恰好是等比数列的前三项.
(Ⅰ)求数列的通项公式;
(Ⅱ)记数列的前项和为,若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列为等差数列,且;数列的前n项和为,且
(I)求数列的通项公式;
(II)若为数列的前n项和,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列中,已知时,.数列满足:
(1)证明:为等差数列,并求的通项公式;
(2)记数列的前项和为,若不等式成立(为正整数).求出所有符合条件的有序实数对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,且,数列满足,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,且对任意非负整数均有:.
(1)求
(2)求证:数列是等差数列,并求的通项;
(3)令,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,且.
(1)求数列的通项公式;
(2)设,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列,等比数列中,.
(1)求
(2)设为数列的前项和,,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是首项为,公差为的等差数列是其前项和.
(1)若,求数列的通项公式;
(2)记,且成等比数列,证明:.

查看答案和解析>>

同步练习册答案