精英家教网 > 高中数学 > 题目详情
17.F1、F2是双曲线$\frac{x^2}{{4{a^{\;}}}}-\frac{y^2}{{{a^{\;}}}}=1$的两个焦点,P为双曲线上一点,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,且△F1PF2的面积为1,则a的值是a=1或-$\frac{1}{4}$.

分析 讨论a>0,a<0,运用双曲线的定义和向量垂直的条件,以及三角形的面积公式,结合勾股定理,解方程即可得到所求值.

解答 解:设P为双曲线右支上一点,
当a>0时,由双曲线的定义可得|PF1|-|PF2|=4$\sqrt{a}$,
$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,可得PF1⊥PF2
△F1PF2的面积为1,可得$\frac{1}{2}$|PF1|•|PF2|=1,
即有|PF1|•|PF2|=2,
由勾股定理可得,|PF1|2+|PF2|2=|F1F2|2=20a,
即有(|PF1|-|PF2|)2+2|PF1|•|PF2|=16a+4=20a,
解得a=1;
当a<0时,双曲线$\frac{x^2}{{4{a^{\;}}}}-\frac{y^2}{{{a^{\;}}}}=1$即为$\frac{{y}^{2}}{-a}$-$\frac{{x}^{2}}{-4a}$=1,
由双曲线的定义可得||PF1|-|PF2||=2$\sqrt{-a}$,
$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,可得PF1⊥PF2
△F1PF2的面积为1,可得$\frac{1}{2}$|PF1|•|PF2|=1,
即有|PF1|•|PF2|=2,
由勾股定理可得,|PF1|2+|PF2|2=|F1F2|2=-20a,
即有(|PF1|-|PF2|)2+2|PF1|•|PF2|=-4a+4=-20a,
解得a=-$\frac{1}{4}$.
综上可得a=1或-$\frac{1}{4}$.
故答案为:a=1或-$\frac{1}{4}$.

点评 本题考查双曲线的定义、方程和性质,以及三角形的勾股定理和面积公式的运用,考查分类讨论思想方法,以及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.上午要上语文、数学、体育和外语四门功课,体育教师不能上第一节,数学教师不上第四节,则不同排课方案的种数是(  )
A.24B.22C.20D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若0<x<$\frac{π}{2}$,则4x与3sinx的大小关系是(  )
A.4x<3sinxB.4x>3sinxC.4x=3sinxD.与x取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|2x2-a|.
(Ⅰ)若f(0)+f(1)>$\frac{3|a|}{a}$,求实数a的取值范围;
(Ⅱ)对任意|x|≤1,f(x)≤1恒成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在五棱锥P-ABCDE中,PA=AB=AE=2a,PB=PE=$2\sqrt{2}$a,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.G为PE的中点.
(1)求AG与平面PDE所成角的大小
(2)求点C到平面PDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设全集U={1,3,5,7},集合A={1,5},则∁UA的子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x1、x2是方程x2+mx+3=0(m∈R)的两虚根,则|x1|+|x2|=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,如果sinA=sinC,B=30°,角B所对的边长b=2,则△ABC的面积为2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow{b}$=(x,-2),且$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$)
(Ⅰ)求|3$\overrightarrow{a}$+$\overrightarrow{b}$|;
(Ⅱ)若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与2$\overrightarrow{a}$+$\overrightarrow{b}$平行,求λ的值.

查看答案和解析>>

同步练习册答案