精英家教网 > 高中数学 > 题目详情
已知⊙O′过定点A(0,p)(p>0),圆心O′在抛物线C:x2=2py(p>0)上运动,MN为圆O′在x轴上所截得的弦.

(1)当O′点运动时,|MN|是否有变化?并证明你的结论;
(2)当|OA|是|OM|与|ON|的等差中项时,试判断抛物线C的准线与圆O′的位置关系,并说明理由.
(1)|MN|不变化,其定值为2p 见解析
(2)见解析
(1)设O′(x0,y0),则x02=2py0(y0≥0),
则⊙O′的半径|O′A|=
⊙O′的方程为(x-x0)2+(y-y0)2=x02+(y0-p)2
令y=0,并把x02=2py0,代入得x2-2x0x+x02-p2=0,
解得x1=x0-p,x2=x0+p,所以|MN|=|x1-x2|=2p,
这说明|MN|不变化,其定值为2p.
(2)不妨设M(x0-p,0),N(x0+p,0).
由题2|OA|=|OM|+|ON|,得2p=|x0-p|+|x0+p|,
所以-p≤x0≤p.
O′到抛物线准线y=-的距离d=y0
⊙O′的半径|O′A|=

因为r>d?x04+4p4>(x02+p2)2?x02p2
又x02≤p2p2(p>0),所以r>d,
即⊙O′与抛物线的准线总相交.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知F为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点,直线l过点F且与双曲线
x2
a2
-
y2
b2
=1
的两条渐近线l1,l2分别交于点M,N,与椭圆交于点A,B.
(Ⅰ)若∠MON=
π
3
,双曲线的焦距为4.求椭圆方程.
(Ⅱ)若
OM
MN
=0
(O为坐标原点),
FA
=
1
3
AN
,求椭圆的离心率e.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的顶点在x轴上,两个顶点之间的距离为8,离心率e=
5
4

(1)求双曲线的标准方程;
(2)求双曲线的焦点到其渐近线的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点上,且灯的深度等于灯口直径,且为64 ,则光源安装的位置到灯的顶端的距离为____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线.命题p: 直线l1:与抛物线C有公共点.命题q: 直线l2:被抛物线C所截得的线段长大于2.若为假, 为真,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F(1,0),M点在x轴上,P点在y轴上,且=2,当点P在y轴上运动时,点N的轨迹方程为(  )
A.y2=2xB.y2=4x
C.y2xD.y2x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知过抛物线的焦点的直线交抛物线于两点.求证:
(1)为定值;
(2) 为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆P:x2+y2=4y及抛物线S:x2=8y,过圆心P作直线l,此直线与上述两曲线的四个交点,自左向右顺次记为A,B,C,D,如果线段AB,BC,CD的长按此顺序构成一个等差数列,则直线l的斜率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的准线与圆相切,则的值为
A.B.1C.2D.4

查看答案和解析>>

同步练习册答案