分析 先利用待定系数法假设圆的标准方程:(x-a)2+(y-b)2=r2,求出已知圆的圆心坐标与半径,再根据条件圆C过点(3,1)和圆C1:x2+y2-4y=0相切与点(1,1),列出方程组可求相应参数,从而可求方程.
解答 解:设所求圆方程:(x-a)2+(y-b)2=r2
已知圆的圆心:(0,2),半径=2,
由题意可得:(3-a)2+(1-b)2=r2,(1-a)2+(1-b)2=r2,(0-a)2+(2-b)2=(2+r)2,
解得a=2,b=0,r2=2
∴所求圆:(x-2)2+y2=2.
故答案为:(x-2)2+y2=2.
点评 本题的考点是圆的标准方程,主要考查利用待定系数法求圆的标准方程,考查学生分析解决问题的能力.
科目:高中数学 来源: 题型:选择题
| A. | f(x)的最小正周期为2π | B. | f(x)在[0,$\frac{π}{4}$]上是增函数 | ||
| C. | f(x)的图象关于直线x=$\frac{5}{6}$π对称 | D. | f($\frac{2π}{3}$)=-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若一个平面内有三个点到另一个平面的距离都相等,则这两个平面平行 | |
| B. | 若一条直线与一个平面内两条直线都垂直,那么这条直线垂直于这个平面 | |
| C. | 若两个平面都垂直于第三个平面,则这两个平面平行 | |
| D. | 若一条直线与两个相交平面都平行,则这条直线与这两个平面的交线平行 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com