精英家教网 > 高中数学 > 题目详情

解不等式: |x-3|-|x+1|<1.               

{x|x>}.


解析:

分析:关键是去掉绝对值.

方法1:零点分段讨论法(利用绝对值的代数定义)

①当时,∴4<1

②当时∴,∴

③当时∴-4<1

综上,原不等式的解集为

也可以这样写:

解:原不等式等价于①或②或 ③,解

①的解集为φ,②的解集为{x|<x<3},③的解集为{x|x3},∴原不等式的解集为{x|x>}.

方法2:数形结合:从形的方面考虑,不等式|x-3|-|x+1|<1表示数轴上到3和-1两点的距离之

差小于1的点∴原不等式的解集为{x|x>}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)•f(b),且当x<0时,f(x)>1.
(1)求证:f(x)>0;
(2)求证:f(x)为减函数;
(3)当f(4)=
1
16
时,解不等式f(x-3)•f(5-x2)≤
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在{x|x>0}上的增函数,且f(
x
y
)=f(x)-f(y)

(Ⅰ)求f(1)的值;
(Ⅱ)若f(6)=1,解不等式f(x+3)-f(
1
x
)<2

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:|x-3|+
2-x
>3

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)关于x的不等式组
x2-x-2>0
2x2+(2k+5)x+5k<0
的整数解的集合为{-2},求实数k的取值范围.
(Ⅱ)若f(x)是定义在(0,+∞)上的增函数,且对一切x>0满足f(
x
y
)=f(x)-f(y)
.f(6)=1,解不等式f(x-3)-f(
1
x
)<2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(0,+∞)上的增函数,且f(
x
y
)=f(x)-f(y)

(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+3)+f(
1
x
)≤2

查看答案和解析>>

同步练习册答案