精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=asin(1-x)+lnx+b(a,b∈R).且f(x)在x=1处的切线方程过坐标原点.
(I)求a,b的关系;
(Ⅱ)若函数f(x)在区间(0,1)上为增函数,求实数a的取值范围;
(Ⅲ)证明$\sum_{i-1}^{n}sin\frac{1}{(k+1)^{2}}<ln2$.

分析 (I)求导数,根据已知条件f(x)在x=1处的切线方程过坐标原点,可求a,b的关系;
(II)函数f(x)在区间(0,1)上为增函数,只要f′(x)≥0在区间(0,1)上恒成立,利用常数分离法进行求解;
(Ⅲ)这个证明题可以利用一个恒等式,sinx<x,然后对$\sum_{k=1}^{n}$sin$\frac{1}{(k+1)^{2}}$从第三项开始进行放缩,然后进行证明.

解答 (I)解:∵f(x)=asin(1-x)+lnx+b,
∴f′(x)=-acos(1-x)+$\frac{1}{x}$,
∴f′(1)=-a+1,
∵f(1)=b,
∴f(x)在x=1处的切线方程为y-b=(-a+1)(x-1),
∵f(x)在x=1处的切线方程过坐标原点,
∴0-b=(-a+1)(0-1),
∴b=1-a;
(Ⅱ)∵f(x)=asin(1-x)+lnx+1-a,
∴f′(x)=acos(1-x)×(-1)+$\frac{1}{x}$,
函数f(x)在区间(0,1)上为增函数,只要f′(x)≥0在区间(0,1)上恒成立,
∴acos(1-x)×(-1)+$\frac{1}{x}$≥0,
∴a≤$\frac{1}{xcos(1-x)}$,
设h(x)=xcos(1-x),0<1-x<1,
∵h′(x)=cos(1-x)+xsin(1-x)>0,
∴h(x)在(0,1)增函数,
∴h(x)<h(1)=1,
∴a≤1;
(Ⅲ)证明:∵0<$\frac{1}{(k+1)^{2}}$<1,
∵sinx<x在x∈(0,1)上恒成立,
∴$\sum_{k=1}^{n}$sin$\frac{1}{(k+1)^{2}}$=sin$\frac{1}{{2}^{2}}$+sin$\frac{1}{{3}^{2}}$+…+sin$\frac{1}{(n+1)^{2}}$≤$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{(n+1)^{2}}$
<$\frac{1}{4}$+$\frac{1}{9}$+$\frac{1}{16}$+$\frac{1}{4×5}$+$\frac{1}{5×6}$+…+$\frac{1}{n(n+1)}$=$\frac{97}{144}$-$\frac{1}{n+1}$<$\frac{97}{144}$<ln2,
∴$\sum_{k=1}^{n}$sin$\frac{1}{(k+1)^{2}}$<ln2.

点评 第一问利用导数可以很容易解决,第二问利用了常数分离法进行证明,第三问需要进行放缩证明,主要利用sinx<x进行证明,此题难度比较大,计算量比较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.水平放置的△ABC的斜二测直观图△A′B′C′如图所示,已知A′C′=3,B′C′=2,则△ABC的面积为(  )
A.6B.3C.$\frac{{3\sqrt{2}}}{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等比数列{an}中a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即:a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2016项之和S2016=2013062(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在两个学习基础相当的班级实行某种教学措施的实验,测试结果见表,则在犯错误的概率不超过0.005的前提下推断实验效果与教学措施.P(k2>7.879)≈0.005(  )
优、良、中总计
实验班48250
对比班381250
总计8614100
A.有关B.无关C.关系不明确D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}是一个等差数列,且a2=1,a5=-5.
(1)求{an}的通项公式;
(2)设${c_n}=\frac{{5-{a_n}}}{2},{b_n}={2^{c_n}}$,记数列{log2bn}的前n项和为Tn,求满足不等式Tn≥2016的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.f(x)=|3-x|+|x-2|的最小值为(  )
A.-1B.2C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的5倍记分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量X的分布列.
(3)记分介于18分到28分之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=-aln(x+1)+$\frac{a+1}{x+1}$-a-1(a∈R).
(Ⅰ)讨论f(x)在(0,+∞)上的单调性;
(Ⅱ)若对任意的正整数n都有(1+$\frac{1}{n}$)n-a>e成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知公差为正数的等差数列{an}满足a1=1,2a1,a3-3,a4+5成等比数列.
(1)求{an}的通项公式;
(2)若bn=(-1)nan,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案