精英家教网 > 高中数学 > 题目详情

【题目】

已知函数y4cos2x4sinxcosx1x∈R).

1)求出函数的最小正周期;

2)求出函数的最大值及其相对应的x值;

3)求出函数的单调增区间;

4)求出函数的对称轴.

【答案】1T;(2y最大值5 xkZ);(3)-,-]kZ ;(4xkZ

【解析】

y4cos2x4sinxcosx14sinxcosx1

2cos2x2sin2x14cos2xsin2x)+1

4cos2x)+1

1T

2)当cos2x)=1时,y最大值5,此时2x2xk∈Z

3)令-π2≤2x≤2,得-x

函数的单调递增区间是[,-]k∈Z

4)令2x,得x

对称轴方程为xk∈Z

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

得到正确结论是( )

A. 有99%以上的把握认为“学生性别与中学生追星无关”

B. 有99%以上的把握认为“学生性别与中学生追星有关”

C. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”

D. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,均是边长为2的等边三角形,点中点,平面平面.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)求函数的单调区间;

(2)若函数上恰有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数是奇函数,求实数的值;

2)若关于的方程在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在研究函数fx)=xR时,分别给出下面几个结论:

①等式f(-x)=-fx)在xR时恒成立;

②函数fx)的值域为(-1,1);

③若x1x2,则一定有fx1)≠fx2);

④方程fx)=xR上有三个根.

其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.

(1)求证:AB∥平面EFGH

(2)AB4CD6,求四边形EFGH周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知四边形BCDE为直角梯形,,且ABE的中点沿AD折到位置如图,连结PCPB构成一个四棱锥

求证

平面ABCD

求二面角的大小;

在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.

查看答案和解析>>

同步练习册答案