精英家教网 > 高中数学 > 题目详情
12.已知O是△ABC外接圆的圆心,已知△ABC外接圆半径为2,若$4\overrightarrow{OA}+5\overrightarrow{OB}+6\overrightarrow{OC}=\vec 0$,则边长AB=3.

分析 由$4\overrightarrow{OA}+5\overrightarrow{OB}+6\overrightarrow{OC}=\vec 0$,得16R2+25R2+40R2cos∠AOB=36R2,即8cos∠AOB=-1,
由2∠ACB=∠AOB,得cosC=$\frac{\sqrt{7}}{4}$⇒sin∠ACB=$\frac{3}{4}$
由$\frac{AB}{sin∠ACB}=2R=4$⇒AB=4sin∠ACB=3

解答 解:设△ABC的外接圆的半径为R,因为$4\overrightarrow{OA}+5\overrightarrow{OB}+6\overrightarrow{OC}=\vec 0$,
所以$4\overrightarrow{OA}+5\overrightarrow{OB}=-6\overrightarrow{OC}$,则16R2+25R2+40R2cos∠AOB=36R2,即8cos∠AOB=-1,
解得:cos∠AOB=-$\frac{1}{8}$.
由2∠ACB=∠AOB,
2cos2∠ACB-1=cos∠AOB=-$\frac{1}{8}$,则cosC=$\frac{\sqrt{7}}{4}$⇒sin∠ACB=$\frac{3}{4}$
由$\frac{AB}{sin∠ACB}=2R=4$⇒AB=4sin∠ACB=3
故答案为:3

点评 本题考查向量的运算和三角形外心的性质和应用,二倍角公式,解题时要认真审题,仔细解答,注意向量运算法则的灵活运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=2x+3在区间[1,5]上的最大值是(  )
A.5B.10C.13D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,满足“对任意x1,x2∈(0,+∞),x1≠x2,均有$\frac{f{(x}_{1})-f{(x}_{2})}{{x}_{1}{-x}_{2}}$>0”的是(  )
A.f(x)=2lg(x-1)B.f(x)=(x+1)2C.f(x)=e-xD.f(x)=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系中,动点M(x,y)满足条件$\left\{\begin{array}{l}x-y+2≤0\\ x+y-2≤0\\ y-1≥0\end{array}\right.$,动点Q在曲线${(x-1)^2}+{y^2}=\frac{1}{2}$上,则|MQ|的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列对于函数f(x)=3+cos2x,x∈(0,3π)的判断正确的是(  )
A.函数f(x)的周期为π
B.对于?a∈R,函数f(x+a)都不可能为偶函数
C.?x0∈(0,3π),使f(x0)>4
D.函数f(x)在区间$[\frac{π}{2},\frac{5π}{4}]$内单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点P在截面A1DB上,则线段AP的最小值等于$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果实数x,y满足线性约束条件$\left\{\begin{array}{l}2x-y≤0\\ x-3y+5≥0\\ y≥1\end{array}\right.$,则z=x-y+1的最小值等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知不等式ln(x+1)-1≤ax+b对一切x>-1都成立,则$\frac{b}{a}$的最小值是(  )
A.e-1B.eC.1-e-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)已知椭圆的两焦点为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),离心率e=$\frac{\sqrt{3}}{2}$.求此椭圆的方程;
(2)过点(3,-2)且与椭圆4x2+9y2=36有相同焦点的椭圆的方程.

查看答案和解析>>

同步练习册答案