精英家教网 > 高中数学 > 题目详情
20.在平面直角坐标系中,动点M(x,y)满足条件$\left\{\begin{array}{l}x-y+2≤0\\ x+y-2≤0\\ y-1≥0\end{array}\right.$,动点Q在曲线${(x-1)^2}+{y^2}=\frac{1}{2}$上,则|MQ|的最小值为$\sqrt{2}$.

分析 首先根据题意作出可行域,|MQ|的其几何意义为可行域中的点到圆上的点距离,分析图象可找到可行域内中距离圆心最近的点,代入计算可得答案.

解答 解:如图可行域和圆为阴影部分,
|MQ|为可行域内点到圆上一点的距离,
∵圆心(1,0)到直线x-y+2=0的距离为:
d=$\frac{|1+2|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$
则|MQ|的最小值为:
d-r=$\frac{3\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$=$\sqrt{2}$.
故最小值为:$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若A(1,3,-2)、B(-2,3,2),则A、B两点间的距离为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=ex-ax有两个零点x1,x2,且x1<x2则下列命题中正确的有①②④(填上你认为正确的所有序号)
①a>e
②x1+x2>2 
③x1x2>1 
④有极小值点x0,且x1+x2<2x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数$z=3+\frac{3-4i}{4+3i}$,则$\overline z$=(  )
A.3+5iB.3+iC.3-iD.3-5i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数$\frac{-2+i}{1+2i}$=(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an}的前n项和为Sn,S7<S9<S8,给出下列命题:
①数列{an}为递减数列;②|a8|>|a9|;③Sn最大值为S8;④满足Sn>0的n最大值为16.
其中正确的命题个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知O是△ABC外接圆的圆心,已知△ABC外接圆半径为2,若$4\overrightarrow{OA}+5\overrightarrow{OB}+6\overrightarrow{OC}=\vec 0$,则边长AB=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,则f2017(x)=(  )
A.sinx+cosxB.sinx-cosxC.-sinx+cosxD.-sinx-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的偶函数f(x)满足f(1-x)=f(1+x),当x∈[1,2]时,f(x)=lnx.则直线x-5y+3=0与曲线y=f(x)的交点个数为(参考数据:ln2≈0.69,ln3≈1.10)(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案