精英家教网 > 高中数学 > 题目详情
15.已知数列{an}是首项为2的等差数列,其前n项和Sn满足4Sn=an•an+1,数列{bn}是以$\frac{1}{2}$为首项的等比数列,且log2b1+log2b2+log2b3=-6
(Ⅰ)求数列{an}.{bn}的通项公式;
(Ⅱ)设数列{bn}的前n项和Tn,若对任意n∈N*不等式$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$≥$\frac{1}{4}$λ-$\frac{1}{2}$Tn恒成立,求λ的取值范围.

分析 I)利用等差数列与等比数列的通项公式即可得出;
(II)利用“裂项求和”可得$\frac{1}{{S}_{1}}$,利用等比数列的前n项和公式可得Tn,利用数列的单调性即可得出

解答 解:(Ⅰ)设等差数列{an}的公差为d,由题意得,?4a1=a1(a1+d),解得d=2,
∴an=2n,
由log2b1+log2b2+log2b3=-6,
得出b1b2b3=b23=$\frac{1}{64}$,
b2=$\frac{1}{4}$,
∵b1=$\frac{1}{2}$,
从而公比q=$\frac{1}{2}$,
∴bn=$\frac{1}{{2}^{n}}$;
(Ⅱ)由(Ⅰ)知,Sn=n(n+1),
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n}$$-\frac{1}{n+1}$,
又Tn=$1-\frac{1}{{2}^{n}}$,
∴不等式$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$≥$\frac{1}{4}$λ-$\frac{1}{2}$Tn
即1$-\frac{1}{n+1}$$≥\frac{1}{4}$λ$-\frac{1}{2}$(1-$\frac{1}{{2}^{n}}$),
$\frac{3}{2}$-$\frac{1}{n+1}$$-\frac{1}{{2}^{n+1}}$$≥\frac{1}{4}$λ,
∵g(n)=$\frac{3}{2}$$-\frac{1}{n+1}$$-\frac{1}{{2}^{n+1}}$对n∈N*递增,
∴g(n)min=$\frac{3}{2}$$-\frac{1}{2}$$-\frac{1}{4}$=$\frac{3}{4}$,
∴只需要$\frac{3}{4}$$≥\frac{1}{4}$λ.即λ的取值范围为(-∞,3].

点评 本题考查了递推式的应用、等比数列与等差数列的通项公式及其前n项和公式、“裂项求和”、数列的单调性,考查了推理能力与计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ax-sinx,x∈[0,π].
(1)当a=$\frac{1}{2}$时,求f(x)的单调区间;
(2)若不等式f(x)≤1-cosx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.观察下列等式:
n•C${\;}_{n-1}^{0}$=1$•{C}_{n}^{1}$,
n$•{C}_{n-1}^{1}$=2$•{C}_{n}^{2}$,
n$•{C}_{n-1}^{2}$=3$•{C}_{n}^{3}$,
n$•{C}_{n-1}^{3}$=4$•{C}_{n}^{4}$,
n$•{C}_{n-1}^{4}$=5$•{C}_{n}^{5}$,

则归纳出一般的结论为n$•{C}_{n-1}^{k}$=(k+1)$•{C}_{n-1}^{k+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.运行如图所示的程序流程图.
(1)若输入x的值为2,根据该程序的运行过程填写下面的表格,并求输出i与x的值;
第i次i=1i=2i=3i=4i=5
x=72267202607
(2)从问题(1)表格中填写的x的5个数值中任取两个数,求这两个数的平均数大于211的概率;
(3)若输出i的值为2,求输入x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆(x-1)2+(y-2)2=1关于直线y=x对称的圆的方程为(x-2)2+(y-1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某高中学校三个年级共有学生2800名,需要用分层抽样的方法抽取一个容量为40的样本,已知高一年级有学生910名;高二年级抽出的样本人数占样本总数的$\frac{3}{10}$;则抽出的样本中有高三年级学生人数为(  )
A.14B.15C.16D.17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知0<φ<π,且满足sin(φ+$\frac{π}{4}$)=sin(φ-$\frac{π}{4}$),设函数f(x)=sin(2x+$\frac{φ}{2}$).
(1)求φ的值;
(2)设0<α<$\frac{π}{2}$,且cosα=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}中,已知a1=2,a3+a5=10,则a7等于(  )
A.5B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(sinθ,-2)与$\overrightarrow{b}$(1,cosθ)互相垂直,其中θ∈(0,$\frac{π}{2}$).
(1)求sinθ和cosθ的值;
(2)若sin(θ-φ)=$\frac{2\sqrt{5}}{5}$,0<φ<$\frac{π}{2}$,求sinφ的值.

查看答案和解析>>

同步练习册答案