精英家教网 > 高中数学 > 题目详情

【题目】已知离心率为的椭圆的左顶点为A,且椭圆E经过与坐标轴不垂直的直线l与椭圆E交于CD两点,且直线AC和直线AD的斜率之积为.

I)求椭圆E的标准方程;

)求证:直线l过定点.

【答案】I;(II)证明见解析.

【解析】

(Ⅰ)根据离心率,可得的关系,代入解析式,代入的坐标,即可求得,进而得椭圆的标准方程.

(Ⅱ)设出直线的方程,将直线方程与椭圆方程联立,根据有两个不同的交点可知,利用韦达定理表示出,由直线AC和直线AD的斜率之积为可得关于的方程,即可求得的关系,代入直线方程即可求得所过定点的坐标;也可将方程设为,将直线方程与椭圆方程联立,根据有两个不同的交点可知,利用韦达定理表示出,由直线AC和直线AD的斜率之积为可得关于的方程,化简求得的值,即可求得所过定点的坐标.

I

椭圆E经过点

椭圆E的标准方程为

II)方法一:的方程为,

,

联立方程组,

化简得,

解得,

.

,

,

化简可得:

(舍),满足

直线l的方程为,

直线l经过定点

方法二:设l的方程为,

,

联立方程组,

化简得,

解得:,

,

,

化简可得:

或者(舍)满足

直线l经过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,判断函数的单调性;

2)若恒成立,求a的取值范围;

3)已知,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是边长为的菱形,,点E是棱BC的中点,,点P在平面ABCD的射影为O,F为棱PA上一点.

1求证:平面平面BCF;

2平面PDE,,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面是等边三角形,且平面平面E的中点,.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,平面分别为的中点.

1)证明:平面

2)若与平面所成的角为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的普通方程为.在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)写出圆的参数方程和直线的直角坐标方程;

2)设点上,点Q在上,求的最小值及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求在点处的切线方程;

2)若不等式恒成立,求k的取值范围;

3)求证:当时,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的四个顶点都在球的表面上,平面,则:(1)球的表面积为__________;(2)若的中点,过点作球的截面,则截面面积的最小值是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线为其焦点,为其准线,过任作一条直线交抛物线于两点,分别为上的射影,的中点,给出下列命题:

1;(2;(3

4的交点的轴上;(5交于原点.

其中真命题的序号为_________.

查看答案和解析>>

同步练习册答案