精英家教网 > 高中数学 > 题目详情
17.解不等式:|x|<|x+1|

分析 由题意可得x2<x2+2x+1,求得x的取值范围.

解答 解:由|x|<|x+1|可得 x2<x2+2x+1,求得x>-$\frac{1}{2}$,
故原不等式的解集为{x|x>-$\frac{1}{2}$ }.

点评 本题主要考查绝对值不等式的解法,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=|x2-2x-1|,若a>b>1且f(a)=f(b),则ab-a-b的取值范围是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.直角坐标系xOy中,将曲线C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)经过伸缩变换$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$得到的曲线记为C2,曲线C3的方程为$\left\{\begin{array}{l}{x=k+1}\\{y=3-k}\end{array}\right.$(k为参数).
(1)写出曲线C2与C3的普通方程;
(2)设P,Q分别是曲线C2,C3上的动点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知在空间四边形OABC中,OA⊥BC,OB⊥AC,求证:OC⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)若m,n∈{1,2,3,4},则方程$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1表示椭圆有多少个?
(2)若m,n∈{1,2,3,4},则方程$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1表示焦点在x轴上的椭圆有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a、b、c为正数,且a+b+c=1,则ab2c+abc2的最大值为$\frac{27}{1024}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=$\sqrt{{2}^{{x}^{2}+2ax-a}-1}$的定义域为R,则实数a的取值范围是(  )
A.(-∞,-1]B.[-1,0]C.[0,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据下列条件求抛物线的方程.
(1)焦点在x轴上,且焦点到准线距离为3;
(2)过点(-2,-3);
(3)以双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{10}$=1的焦点为焦点的抛物线方程;
(4)焦点在x-2y+4=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.过抛物线y2=4x的集点F作斜率为2的直线l,l交抛物线于A、B两点,求以线段AB为直径的圆的方程.

查看答案和解析>>

同步练习册答案