精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=|x2-2x-1|,若a>b>1且f(a)=f(b),则ab-a-b的取值范围是(-1,1).

分析 作出函数f(x)的图象,由a>b>1,且f(a)=f(b)可得 (a-1)2+(b-1)2=4.设a-1=2cosθ,b-1=2sinθ,θ∈(0,$\frac{π}{4}$),根据ab-a-b=2sin2θ-1,利用正弦函数的定义域和值域求得ab-a-b的范围.

解答 解:作出函数f(x)的图象,如图:

可得f(x)=|x2-2x-1|的图象关于直线x=1对称,
且f(1-$\sqrt{2}$)=f(1+$\sqrt{2}$)=0,
f(3)=f(-1)=f(1)=2,
由a>b>1,且f(a)=f(b),得a2-2a-1=-(b2-2b-1),整理得 (a-1)2+(b-1)2=4.
设a-1=2cosθ,b-1=2sinθ,θ∈(0,$\frac{π}{4}$),
则ab-a-b=(a-1)(b-1)-1=2sin2θ-1,
由sin2θ∈(0,1),可得2sin2θ-1∈(-1,1),即ab-a-b∈(-1,1),
即:-1<ab-a-b<1.
故答案为:(-1,1).

点评 本题主要考查了二次函数的性质,同时考查了分析问题的能力,计算能力,讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(|x|-1)的定义域域是[-3,-1],求函数f(x2-x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A、B、C的对边分别是a,b,c,若a=2,b=2$\sqrt{2}$,且三角形有两解,则角A的取值范围是(  )
A.(0,$\frac{π}{4}$)B.($\frac{π}{4}$,$\frac{π}{2}$)C.($\frac{π}{4}$,$\frac{3π}{4}$)D.($\frac{π}{4}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知sinα-2cosα+1=0,α≠kπ+$\frac{π}{2}$,k∈Z.
(1)求tan(3π-α)的值;
(2)求$\frac{1}{si{n}^{2}α-sinαcosα+1}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在直四棱柱ABCD-A1B1C1D1中,AD∥BC,E是DD1的中点,F是平面B1C1E与直线AA1的交点.证明:EF∥A1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某人划船逆流而上,当船经过一桥时,船上一小木块掉进河水里,但一直航行到上游某处时此人才发现,便立即返航追赶,当他返航经过1小时追上小木块时,发现小木块距离桥6km远,若此人向上游和向下游航行时的划行力一样(相当于船在静水中前进的速率为一定值),则河水的流速为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”,命题q:“a${\;}^{\frac{1}{2}}$$>{b}^{\frac{1}{2}}$”的充要条件为“lna>lnb”,则下列复合命题中假命题是(  )
A.p∨qB.p∧qC.(¬p)∨¬qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知2${\;}^{{x}^{2}-4x+4}$≤($\frac{1}{4}$)x-2,求函数f(x)=4${\;}^{x-\frac{1}{2}}$-3•2x+5的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解不等式:|x|<|x+1|

查看答案和解析>>

同步练习册答案