精英家教网 > 高中数学 > 题目详情
6.已知数列﹛an﹜满足an+1=$\frac{1}{2}+\sqrt{{a_n}-a_n^2}$,且a1=$\frac{1}{2}$,则该数列前2013项和等于(  )
A.1509.5B.1508.5C.1509D.1508

分析 通过计算出前几项的值可知该数列奇数项为$\frac{1}{2}$、偶数项为1,进而计算可得结论.

解答 解:∵an+1=$\frac{1}{2}+\sqrt{{a_n}-a_n^2}$,且a1=$\frac{1}{2}$,
∴a2=$\frac{1}{2}$+$\sqrt{{a}_{1}-{{a}_{1}}^{2}}$=$\frac{1}{2}$+$\sqrt{\frac{1}{2}-\frac{1}{{2}^{2}}}$=$\frac{1}{2}$+$\frac{1}{2}$=1,
a3=$\frac{1}{2}$+$\sqrt{{a}_{2}-{{a}_{2}}^{2}}$=$\frac{1}{2}$+$\sqrt{1-{1}^{2}}$=$\frac{1}{2}$,
∴数列{an}是以2为周期的周期数列,
且奇数项为$\frac{1}{2}$、偶数项为1,
∴该数列前2013项和等于:1007•$\frac{1}{2}$+1006•1=1509.5,
故选:A.

点评 本题考查数列的通项及前n项和,找出周期是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若方程$\frac{x^2}{|m|-2}+\frac{y^2}{5-m}=1$表示双曲线,则m的取值范围是(  )
A.-2<m<2B.m>5C.-2<m<2或m>5D.全体实数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.2015年6月20日是我们的传统节日--”端午节”,这天小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则P(B|A)=(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{10}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如皋市某电子厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,正品率P与日产量x(件)之间大体满足关系:$\begin{array}{l}P=\left\{\begin{array}{l}1-\frac{1}{96-x}(1≤x≤c,x∈N,1≤c<96)\\ \frac{1}{3}(x>c,x∈N)\end{array}\right.\end{array}$
(注:正品率$P=\frac{合格品数}{生产量}$,如P=0.9表示每生产10件产品,约有9件为合格品,其余为次品.)已知每生产一件合格的仪器可以盈利A元,但每生产一件次品将亏损$\frac{A}{2}$元,故厂方希望定出合适的日产量,
(1)试将生产这种仪器每天的盈利额T(元)表示为日产量x(件)的函数;
(2)当日产量x为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱柱ABCD-A1B1C1D1中,侧面ADD1A1⊥底面ABCD,D1A=D1D=$\sqrt{2}$,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ) 求证:A1O∥平面AB1C;
(Ⅱ) 求直线CC1与平面AC1D1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,将平面直角坐标系中的纵轴绕原点O顺时针旋转30°后,构成一个斜坐标平面xOy.在此斜坐标平面xOy中,点P(x,y)的坐标定义如下:过点P作两坐标轴的平行线,分别交两轴于M、N两点,则M在Ox轴上表示的数为x,N在Oy轴上表示的数为y.那么以原点O为圆心的单位圆在此斜坐标系下的方程为(  )
A.x2+y2+xy-1=0B.x2+y2+xy+1=0C.x2+y2-xy-1=0D.x2+y2-xy+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若运行所给程序输出的值是16,则输入的实数x值为(  )
A.32B.8C.-4或8D.4或-4或8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,已知a=2,b=$\sqrt{3}$,c=3,则cosC=(  )
A.$\frac{5}{6}$B.$\frac{1}{6}$C.$\frac{\sqrt{3}}{9}$D.-$\frac{\sqrt{3}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的三个内角A、B、C的对边分别是a,b,c,且$\frac{cosB}{cosC}+\frac{b}{2a+c}=0$
(1)求B的大小;
(2)若$b=\sqrt{21},a+c=5$,求△ABC的面积.
(3)若$b=\sqrt{3}$,求△ABC的周长的最大值.

查看答案和解析>>

同步练习册答案